Modulation of the stretch feedback pathway in the cardiac neuromuscular system of the American lobster, Homarus americanus
The cardiac ganglion (CG) is a central pattern generator, a neural network that, when activated, produces patterned motor outputs such as breathing and walking. The CG induces the heart contractions of the American lobster, Homarus americanus, making the lobster heart neurogenic. In the American lobster, the CG is made up of nine neurons: four premotor pacemaker neurons that send signals to five motor neurons, causing bursts of action potentials from the motor neurons. These bursts cause cardiac muscle contractions that vary in strength based on the burst duration, frequency, and pattern. The activity of the CG is modulated by feedback pathways and neuromodulators, allowing for flexibility in the CG’s motor output and appropriate responses to changes in the animal’s environment. Two feedback pathways modulate the CG motor output, the excitatory cardiac muscle stretch and inhibitory nitric oxide feedback pathways. Despite our knowledge of the modulation of the CG by feedback pathways and neuromodulators separately, little is known about how neuromodulators influence the sensory feedback response to cardiac muscle stretch. I found one neuromodulator to modulate each phase of the stretch response differently, one neuromodulator to generally not affect the stretch response, and three neuromodulators to suppress the stretch response. These results suggest neuromodulators can act to produce flexibility in a CPG’s motor output, allowing the system to respond appropriately to changes in an organism’s environment, and allow for variation in CPG responses to different stimuli.