The contributions of motor neuronal and muscle modulation to behavioral flexibility in the stomatogastric system

The stomatogastric nervous system of crustaceans, which controls the four parts ofthe foregut, is subject to modulation at all levels, sensory, central and motor. Modulation of the central pattern generators, which are themselves made up largely of motor neurons, providesfor increased behavioral flexibility in a variety of ways. First, each of the pattern generators can be reconfigured to give multiple outputs. Second, the "boundaries" of the different pattern generators are in fact somewhat fluid, so that the neuronal composition of the pattern generators can be altered. For example, neurons can switch from one pattern generator toanother, or two or more pattern generators can fuse to generate an entirely new pattern and thereby produce a new behavior. The mechanisms responsible for many of these modulations include alterations of both intrinsic properties and synaptic interactions between neurons. In addition, the alteration of membrane properties contributes more directly to the behavioral output by changing action potential frequency. Finally, the muscles of the stomatogastric system can themselves be modulated, with the cpvl muscle, for example, becoming an endogenous oscillator in the presence of either dopamine or the peptide FMRFamide. © 1995 by the American Society of Zoologists.

About this item

Supplemental Files

Loading...
Current image, full-size
Current image, reduced-size
Other download options:

Collection organization

Level of Description Summary Catalog Record