Salix exigua clonal growth and population dynamics in relation to disturbance regime variation
Willows are important riparian colonizers. However, the predominant models of early riparian colonization, which emphasize seedling recruitment, are inadequate to explain the success of these species in light of the extremely low rates of seedling survival observed. We used molecular fingerprinting markers (AFLPs) to identify and characterize Salix exigua clones on six sites, ranging in size from 850 to 1150 m2, located on two rivers. Clones as large as 325 m2 were detected, and an average of six clones per site occupied 75% of the vegetated area. Building on Mahoney and Rood's recruitment box model, we propose a model whereby prolific clonal growth allows for long-term colonization of riparian zones, and the balance between the relative importance of seedling regeneration and clonal growth varies based upon disturbance regime. A reduction in disturbance regime resulted in greater clonal growth and reduced genotypic variation. It is probable that, with an extended reduction in disturbance, the Salix exigua component would be represented by fewer, larger clones and would eventually decline significantly when these clones are replaced by taller and more shade tolerant species. © 2005 by the Ecological Society of America.
Collection organization
Level of Description | Summary | Catalog Record | |
---|---|---|---|