Are melanized feather barbs stronger?

Melanin has been associated with increased resistance to abrasion, decreased wear and lowered barb breakage in feathers. But, this association was inferred without considering barb position along the rachis as a potentially confounding variable. We examined the cross-sectional area, breaking force, breaking stress, breaking strain and toughness of melanized and unmelanized barbs along the entire rachis of a primary feather from an osprey (Pandion haliaetus). Although breaking force was higher for melanized barbs, breaking stress (force divided by cross-sectional area) was greater for unmelanized barbs. But when position was considered, all mechanical differences between melanized and unmelanized barbs disappeared. Barb breaking stress, breaking strain and toughness decreased, and breaking stiffness increased, distally along the rachis. These proximal-distal material property changes are small and seem unlikely to affect flight performance of barbs. Our observations of barb bending, breaking and morphology, however, lead us to propose a design principle for barbs. We propose that, by being thicker-walled dorso-ventrally, the barb's flexural stiffness is increased during flight; but, by allowing for twisting when loaded with dangerously high forces, barbs firstly avoid failure by bending and secondly avoid complete failure by buckling rather than rupturing.

About this item

Supplemental Files

Loading...
Current image, full-size
Current image, reduced-size
Other download options:

Collection organization

Level of Description Summary Catalog Record