Showing 1 - 6 of 6 Items
Date: 2006-04-01
Creator: Bruce D. Kohorn, Masaru Kobayashi, Sue Johansen, Jeff Riese, Li Fen, Huang, Karen Koch, Sarita Fu, Anjali Dotson, Nicole Byers
Access: Open access
- The wall-associated kinases (WAK), a family of five proteins that contain extracellular domains that can be linked to pectin molecules of the cell wall, span the plasma membrane and have a cytoplasmic serine/threonine kinase domain. Previous work has shown that a reduction in WAK protein levels leads to a loss of cell expansion, indicating that these receptor-like proteins have a role in cell shape formation. Here it is shown that a single wak2 mutation exhibits a dependence on sugars and salts for seedling growth. This mutation also reduces the expression and activity of vacuolar invertase, often a key factor in turgor and expansion. WAKs may thus provide a molecular mechanism linking cell wall sensing (via pectin attachment) to regulation of solute metabolism, which in turn is known to be involved in turgor maintenance in growing cells. © 2006 The Authors.
Date: 2021-05-01
Creator: Bruce D. Kohorn, Frances D.H. Zorensky, Jacob Dexter-Meldrum, Salem Chabout, Gregory, Mouille, Susan Kohorn
Access: Open access
- Plant growth, morphogenesis and development involve cellular adhesion, a process dependent on the composition and structure of the extracellular matrix or cell wall. Pectin in the cell wall is thought to play an essential role in adhesion, and its modification and cleavage are suggested to be highly regulated so as to change adhesive properties. To increase our understanding of plant cell adhesion, a population of ethyl methanesulfonate-mutagenized Arabidopsis were screened for hypocotyl adhesion defects using the pectin binding dye Ruthenium Red that penetrates defective but not wild-type (WT) hypocotyl cell walls. Genomic sequencing was used to identify a mutant allele of ELMO1 which encodes a 20 kDa Golgi membrane protein that has no predicted enzymatic domains. ELMO1 colocalizes with several Golgi markers and elmo1-/- plants can be rescued by an ELMO1-GFP fusion. elmo1-/- exhibits reduced mannose content relative to WT but no other cell wall changes and can be rescued to WT phenotype by mutants in ESMERALDA1, which also suppresses other adhesion mutants. elmo1 describes a previously unidentified role for the ELMO1 protein in plant cell adhesion.
Date: 2021-04-01
Creator: Bruce D. Kohorn, Jacob Dexter-Meldrum, Frances D.H. Zorensky, Salem Chabout, Gregory, Mouille, Susan Kohorn
Access: Open access
- The cellulose-and pectin-rich plant cell wall defines cell structure, mediates defense against pathogens, and facilitates plant cell adhesion. An adhesion mutant screen of Arabidopsis hypocotyls identified a new allele of QUASIMODO2 (QUA2), a gene required for pectin accumulation and whose mutants have reduced pectin content and adhesion defects. A suppressor of qua2 was also isolated and describes a null allele of SABRE (SAB), which encodes a previously described plasma membrane protein required for longitudinal cellular expansion that organizes the tubulin cytoskeleton. sab mutants have increased pectin content, increased levels of expression of pectin methylesterases and extensins, and reduced cell surface area relative to qua2 and Wild Type, con-tributing to a restoration of cell adhesion.
Date: 2009-12-01
Creator: Bruce D. Kohorn, Susan Johansen, Akira Shishido, Tanya Todorova, Rhysly, Martinez, Elita Defeo, Pablo Obregon
Access: Open access
- The angiosperm extracellular matrix, or cell wall, is composed of a complex array of cellulose, hemicelluose, pectins and proteins, the modification and regulated synthesis of which are essential for cell growth and division. The wall associated kinases (WAKs) are receptor-like proteins that have an extracellular domain that bind pectins, the more flexible portion of the extracellular matrix, and are required for cell expansion as they have a role in regulating cellular solute concentrations. We show here that both recombinant WAK1 and WAK2 bind pectin in vitro. In protoplasts pectins activate, in a WAK2-dependent fashion, the transcription of vacuolar invertase, and a wak2 mutant alters the normal pectin regulation of mitogen-activated protein kinases. Microarray analysis shows that WAK2 is required for the pectin activation of numerous genes in protoplasts, many of which are involved in cell wall biogenesis. Thus, WAK2 plays a major role in signaling a diverse array of cellular events in response to pectin in the extracellular matrix. © 2009 Blackwell Publishing Ltd.
Date: 2012-05-08
Creator: Bruce D. Kohorn, Susan L. Kohorn
Access: Open access
- The wall-associated kinases, WAKs, are encoded by five highly similar genes clustered in a 30-kb locus in Arabidopsis. These receptor-like proteins contain a cytoplasmic serine threonine kinase, a transmembrane domain, and a less conserved region that is bound to the cell wall and contains a series of epidermal growth factor repeats. Evidence is emerging that WAKs serve as pectin receptors, for both short oligogalacturonic acid fragments generated during pathogen exposure or wounding, and for longer pectins resident in native cell walls. This ability to bind and respond to several types of pectins correlates with a demonstrated role for WAKs in both the pathogen response and cell expansion during plant development. © 2012 Kohorn and Kohorn.
Date: 2006-06-01
Creator: Bruce D. Kohorn, Masaru Kobayashi, Sue Johansen, Henry Perry Friedman, Andy, Fischer, Nicole Byers
Access: Open access
- The Arabidopsis thaliana wall-associated kinases (WAKs) bind to pectin with an extracellular domain and also contain a cytoplasmic protein kinase domain. WAKs are required for cell elongation and modulate sugar metabolism. This work shows that in leaf protoplasts a WAK1-GFP fusion protein accumulates in a cytoplasmic compartment that contains pectin. The WAK compartment contains markers for the Golgi, the site of pectin synthesis. The migration of WAK1-GFP to the cell surface is far slower than that of a cell surface receptor not associated with the cell wall, is influenced by the presence of fucose side chains on one or more unidentified molecules that might include pectin, and is dependent upon cellulose synthesis on the plasma membrane. WAK is crosslinked into a detergent-insoluble complex within the cytoplasmic compartment before it appears on the cell surface, and this is independent of fucose modification or cellulose synthesis. Thus, the assembly and crosslinking of WAKs may begin at an early stage within a cytoplasmic compartment rather than in the cell wall itself, and is coordinated with synthesis of surface cellulose.