Showing 1 - 4 of 4 Items
Peripheral modulation of cardiac contractions in the American lobster, Homarus americanus, by the peptide myosuppressin is mediated by effects on the cardiac muscle itself
Date: 2023-01-01
Creator: Isabel Stella Petropoulos
Access: Open access
- A substantial factor for behavioral flexibility is modulation — largely via neuropeptides — which occurs at multiple sites including neurons, muscles, and the neuromuscular junction (NMJ). Complex modulation distributed across multiple sites provides an interesting question: does modulation at multiple locations lead to greater dynamics than one receptor site alone? The cardiac neuromuscular system of the American lobster (Homarus americanus), driven by a central pattern generator called the cardiac ganglion (CG), is a model system for peptide modulation. The peptide myosuppressin (pQDLDHVFLRFamide) has been shown in the whole heart to decrease contraction frequency, largely due to its effects on the CG, as well as increase contraction amplitude by acting on periphery of the neuromuscular system, either at the cardiac muscle, the NMJ, or both. This set of experiments addresses the location(s) at which myosuppressin exerts its effects at the periphery. To elucidate myosuppressin’s effects on the cardiac muscle, the CG was removed, and muscle contractions were stimulated with L-glutamate while superfusing myosuppressin. Myosuppressin increased glutamate-evoked contraction amplitude in the isolated muscle, suggesting that myosuppressin exerts its peripheral effects directly on the cardiac muscle. To examine effects on the NMJ, excitatory junction potentials were evoked by stimulating of the motor nerve and intracellularly recording a single muscle fiber both in control saline and in the presence of myosuppressin. Myosuppressin did not modulate the amplitude of EJPs suggesting myosuppressin acts at the muscle and not at the NMJ, to cause an increase in contraction amplitude.
To what extent may peptide receptor gene diversity/complement contribute to functional flexibility in a simple pattern-generating neural network?
Date: 2019-06-01
Creator: Patsy S. Dickinson
J. Joe Hull
Alexandra Miller
Emily R. Oleisky
Andrew E., Christie
Access: Open access
- Peptides are known to contribute to central pattern generator (CPG) flexibility throughout the animal kingdom. However, the role played by receptor diversity/complement in determining this functional flexibility is not clear. The stomatogastric ganglion (STG) of the crab, Cancer borealis, contains CPGs that are models for investigating peptidergic control of rhythmic behavior. Although many Cancer peptides have been identified, their peptide receptors are largely unknown. Thus, the extent to which receptor diversity/complement contributes to modulatory flexibility in this system remains unresolved. Here, a Cancer mixed nervous system transcriptome was used to determine the peptide receptor complement for the crab nervous system as a whole. Receptors for 27 peptide families, including multiple receptors for some groups, were identified. To increase confidence in the predicted sequences, receptors for allatostatin-A, allatostatin-B, and allatostatin-C were cloned, sequenced, and expressed in an insect cell line; as expected, all three receptors trafficked to the cell membrane. RT-PCR was used to determine whether each receptor was expressed in the Cancer STG. Transcripts for 36 of the 46 identified receptors were amplified; these included at least one for each peptide family except RYamide. Finally, two peptides untested on the crab STG were assessed for their influence on its motor outputs. Myosuppressin, for which STG receptors were identified, exhibited clear modulatory effects on the motor patterns of the ganglion, while a native RYamide, for which no STG receptors were found, elicited no consistent modulatory effects. These data support receptor diversity/complement as a major contributor to the functional flexibility of CPGs.
Characterizing and Investigating the Electrophysiological Properties of the Plastic Cricket Auditory System in Response to Cooling
Date: 2022-01-01
Creator: Hannah Tess Scotch
Access: Open access
- The auditory system of the Mediterranean field cricket (Gryllus bimaculatus) is capable of profound compensatory plasticity. Following deafferentation due to the loss of an auditory organ, the dendrites of intermediate auditory neuron Ascending Neuron 2 (AN-2) grow across the midline and functionally connect to contralateral afferents. The loss of the auditory organ can be mimicked with reversible cold-deactivation, in which cooled Peltier elements silence the auditory organ and its afferents. Though this would presumably prevent AN-2 from firing, cooling instead induces a novel firing pattern called DOPE (delayed-onset, prolonged-excitation). In this study, intracellular physiological recordings were completed before, during, and after cooling in response to “chirp” and “pulse” sounds. Analysis was performed within and across crickets to characterize DOPE. Results revealed expected variability across individuals, as well as a wider spread of onset delay and a decrease in spike frequency and number of spikes per burst relative to baseline within individuals during cooling. Generally, subsequent warming only partially restored the neuronal responses to baseline as measured by all three parameters. This was particularly true in response to “pulse” stimuli. Future experiments will investigate if DOPE is caused by synaptic inputs or intrinsic properties of AN-2, as well as the role of inhibition in the circuit. Eventually, we hope to develop a complete model of the auditory circuit for future investigations of plasticity, with ramifications for treating human neuronal injury.
Responses of central pattern generators in the American lobster STNS to multiple members of a novel neuropeptide family
Date: 2020-01-01
Creator: Benjamin Harley Wong
Access: Open access
- Neuropeptides are important modulators of neural activity, allowing neural networks, such as the central pattern generators (CPGs) that control rhythmic movements, to alter their output and thus generate behavioral flexibility. Isoforms of a neuropeptide family vary in physical structure, allowing potentially distinct functional neuromodulatory effects on CPG systems. While some familial neuropeptide isoforms can differentially affect a system, others in the same family may elicit indistinguishable effects. Here, we examined the effects elicited by members of a novel family of six peptide hormone isoforms (GSEFLamides: I-, M-, AL-, AM-, AV-, and VM-GSEFLamide) on the pyloric filter and gastric mill CPGs in the stomatogastric nervous system (STNS) of the American lobster, Homarus americanus. Recent unpublished work from the Dickinson lab found that five of the six GSEFLamides elicited similar increases in contraction amplitude when perfused through the isolated lobster heart, while one (AVGSEFLamide) had virtually no effect. Using extracellular recordings, we found the pattern of GSEFLamide effects on the STNS gastric mill to be similar to the pattern observed in the lobster cardiac system; the gastric mill circuit was fairly consistently activated by all isoforms except AVGSEFLamide. The intrinsically active pyloric pattern was also significantly enhanced by three out of five peptide isoforms, and nearly significantly enhanced by two more, but was likewise non-responsive to AVGSEFLamide. While the reason AVGSEFLamide had no effect on either pattern is unknown, the similar phenomenon noted in the isolated whole heart potentially indicates that this isoform lacks any function in the lobster.