Showing 1 - 2 of 2 Items
ERPs and neural oscillations during volitional suppression of memory retrieval
Date: 2013-10-01
Creator: Brendan Eliot Depue, Nick Ketz, Matthew V. Mollison, Erika Nyhus, Marie T. Banich, Tim Curran
Access: Open access
- Although investigations of memory and the dynamics of ERP components and neural oscillations as assessed through EEG have been well utilized, little research into the volitional nature of suppression over memory retrieval have used these methods. Oscillation analyses conducted on the Think/No-Think (TNT) task and volitional suppression of retrieval are of interest to broaden our knowledge of neural oscillations associated not only during successful memory retrieval but also when retrieval is unwanted or suppressed. In the current study, we measured EEG during a TNT task and performed ERP and EEG spectral power band analyses. ERP results replicated other researchers' observations of increases in 500-800 msec parietal effects for items where retrieval was instructed to be elaborated compared with being suppressed. Furthermore, EEG analyses indicated increased alpha (8-12 Hz) and theta (3-8 Hz) oscillations across parietal electrodes for items that were instructed to be suppressed versus those to be elaborated. Additionally, during the second half of the experiment (after repeated attempts at control), increases in theta oscillations were found across both frontal and parietal electrodes for items that were instructed to be suppressed and that were ultimately forgotten versus those ultimately remembered. Increased alpha power for items that were instructed to be suppressed versus elaborated may indicate reductions of retrieval attempts or lack of retrieval success. Increased theta power for items that were instructed to be suppressed versus elaborated may indicate increased or prolonged cognitive control to monitor retrieval events. © 2013 Massachusetts Institute of Technology.
Mitochondrial genotype influences the response to cold stress in the European green crab, Carcinus maenas
Date: 2019-01-01
Creator: Aidan F. Coyle, Erin R. Voss, Carolyn K. Tepolt, David B. Carlon
Access: Open access
- Hybrid zones provide natural experiments in recombination within and between genomes that may have strong effects on organismal fitness. On the East Coast of North America, two distinct lineages of the European green crab (Carcinus maenas) have been introduced in the last two centuries. These two lineages with putatively different adaptive properties have hybridized along the coast of the eastern Gulf of Maine, producing new nuclear and mitochondrial combinations that show clinal variation correlated with water temperature. To test the hypothesis that mitochondrial or nuclear genes have effects on thermal tolerance, we first measured the response to cold stress in crabs collected throughout the hybrid zone, then sequenced the mitochondrial CO1 gene and two nuclear single nucleotide polymorphisms (SNPs) representative of nuclear genetic lineage. Mitochondrial haplotype had a strong association with the ability of crabs to right themselves at 4.5°C that was sex specific: haplotypes originally from northern Europe gave male crabs an advantage while there was no haplotype effect on righting in female crabs. By contrast, the two nuclear SNPs that were significant outliers in a comparison between northern and southern C. maenas populations had no effect on righting response at low temperature. These results add C. maenas to the shortlist of ectotherms in which mitochondrial variation has been shown to affect thermal tolerance, and suggest that natural selection is shaping the structure of the hybrid zone across the Gulf of Maine. Our limited genomic sampling does not eliminate the strong possibility that mito-nuclear co-adaptation may play a role in the differences in thermal phenotypes documented here. Linkage between mitochondrial genotype and thermal tolerance suggests a role for local adaptation in promoting the spread of invasive populations of C. maenas around the world.