Showing 1 - 10 of 106 Items

Effects of octopamine and tyramine on the cardiac system of the lobster, Homarus americanus

Date: 2019-05-01

Creator: Casey Breslow

Access: Open access

Modulation in neural systems is important for regulating physiology and behavior (Wright et al., 2010). Peptides, hormones, and amines are common neural modulators, acting on many neural systems across species. One group of neural networks that can be regulated are central pattern generators (CPGs), which generate rhythmic neural patterns, which drive behaviors (Marder and Bucher, 2001). Octopamine, and its precursor tyramine, are two amines that have been found to regulate (CPGs) across species (Cooke, 2002; Fussnecker et al., 2006). One role of octopamine in the decapod neurogenic heart is regulating the frequency and the duration of heart beats. However, the precise site of octopamine modulation within the cardiac system is not yet known (Kurumoto and Ebara, 1991). One possible site of action is the cardiac ganglion (CG), the CPG in decapod hearts. The transcripts for the enzymes required to synthesize octopamine from tyramine have been identified and localized in the CG (Christie et al., 2018). This would suggest that octopamine is produced in the CG, where it could have a direct action on those neurons, or it could be released peripherally. We have found individual variation in the response to octopamine and its precursor tyramine, and significant effects of frequency and contraction amplitude in the whole heart.


Aneuploidy and isochromosome formation in drug-resistant Candida albicans

Date: 2006-07-21

Creator: Anna Selmecki, Anja Forche, Judith Berman

Access: Open access

Resistance to the limited number of available antifungal drugs is a serious problem in the treatment of Candida albicans. We found that aneuploidy in general and a specific segmental aneuploidy, consisting of an isochromosome composed of the two left arms of chromosome 5, were associated with azole resistance. The isochromosome forms around a single centromere flanked by an inverted repeat and was found as an independent chromosome or fused at the telomere to a full-length homolog of chromosome 5. Increases and decreases in drug resistance were strongly associated with gain and loss of this isochromosome, which bears genes expressing the enzyme in the ergosterol pathway targeted by azole drugs, efflux pumps, and a transcription factor that positively regulates a subset of efflux pump genes.


Active and Passive Spatial Learning and Memory in Human Navigation

Date: 2019-01-01

Creator: Caroline Rice

Access: Open access

Previous studies show that active exploration of an environment contributes to spatial learning more than passive visual exposure (Chrastil & Warren, 2013; Chrastil & Warren, 2015). Active navigation and cognitive decision-making in a novel environment leads to increased spatial knowledge and memory of location compared to a passive exploration that removes the decision-making component. There is evidence of theta oscillations present in electroencephalography (EEG) recordings from the hippocampus and pre-frontal cortex (PFC). These low-frequency waves could reflect spatial navigation and memory performance, suggested by their involvement in communication between the formerly named brain regions. Through communication with the hippocampus, theta oscillations could be involved in the integration of new spatial information into memory. While undergoing EEG, subjects in this study either actively or passively explored a virtual maze, identified as the “Free” or “Guided” groups, respectively. After exploring, subjects’ spatial memory of the maze was tested through a task that required navigation from a starting object to a target object. Behavioral data show increased spatial memory for the Free group, indicated by significantly greater navigation to the correct target object in the memory task. EEG results indicate significantly greater theta oscillations in frontal regions for the Free group during the exploration phase. These results support those found in previous studies and could indicate a correlation between frontal theta oscillations during learning of novel environments and spatial memory.


Miniature of The Regulatory Effect of High Dopamine on the Hyperpolarization-Activated Inward Current  (I<sub>h</sub>) and its Role in the Stability and Rhythmicity of Mammalian Locomotor Neural Networks
The Regulatory Effect of High Dopamine on the Hyperpolarization-Activated Inward Current (Ih) and its Role in the Stability and Rhythmicity of Mammalian Locomotor Neural Networks
Access to this record is restricted to members of the Bowdoin community. Log in here to view.
  • Restriction End Date: 2025-06-01

    Date: 2022-01-01

    Creator: Abigail Raymond

    Access: Access restricted to the Bowdoin Community



      Miniature of Sex- and age-specific susceptibility of parvalbumin neurons to DNA methylation in a model of early life adversity
      Sex- and age-specific susceptibility of parvalbumin neurons to DNA methylation in a model of early life adversity
      This record is embargoed.
        • Embargo End Date: 2025-05-19

        Date: 2022-01-01

        Creator: Alissa Chen

        Access: Embargoed



          Miniature of Differential modulation of the <i>Homarus americanus</i> cardiac neuromuscular system across cell types and among neuropeptide isoforms
          Differential modulation of the Homarus americanus cardiac neuromuscular system across cell types and among neuropeptide isoforms
          Access to this record is restricted to members of the Bowdoin community. Log in here to view.

              Date: 2020-01-01

              Creator: Emily R Oleisky

              Access: Access restricted to the Bowdoin Community



                Midazolam-induced amnesia reduces memory for details and affects the ERP correlates of recollection and familiarity

                Date: 2012-02-01

                Creator: Erika Nyhus, Tim Curran

                Access: Open access

                Dual process models suggest that recognition memory is supported by familiarity and recollection processes. Previous research administering amnesic drugs and measuring ERPs during recognition memory have provided evidence for separable neural correlates of familiarity and recollection. This study examined the effect of midazolam-induced amnesia on memory for details and the proposed ERP correlates of recognition. Midazolam or saline was administered while subjects studied oriented pictures of common objects. ERPs were recorded during a recognition test 1 day later. Subjects' discrimination of old and new pictures as well as orientation discrimination was worse when they were given midazolam instead of saline. As predicted, the parietal old/new effect was decreased with the administration of midazolam. However, weaker effects on FN400 old/new effects were also observed. These results provide converging pharmacological and electrophysiological evidence that midazolam primarily affects recollection as indexed by parietal ERP old/new effects and memory for orientation, while also exerting some weaker effects on familiarity as indexed by FN400 old/new effects. © 2011 Massachusetts Institute of Technology.


                Neural inhibition enables selection during language processing

                Date: 2010-09-21

                Creator: Hannah R. Snyder, Natalie Hutchison, Erika Nyhus, Tim Curran, Marie T., Banich, Randall C. O'Reilly, Yuko Munakata

                Access: Open access

                Whether grocery shopping or choosing words to express a thought, selecting between options can be challenging, especially for people with anxiety. We investigate the neural mechanisms supporting selection during language processing and its breakdown in anxiety. Our neural network simulations demonstrate a critical role for competitive, inhibitory dynamics supported by GABAergic interneurons. As predicted by our model, we find that anxiety (associated with reduced neural inhibition) impairs selection among options and associated prefrontal cortical activity, even in a simple, nonaffective verb-generation task, and the GABA agonist midazolam (which increases neural inhibition) improves selection, whereas retrieval from semantic memory is unaffected when selection demands are low. Neural inhibition is key to choosing our words.


                Theta oscillations support active exploration in human spatial navigation

                Date: 2022-11-15

                Creator: Elizabeth R. Chrastil, Caroline Rice, Mathias Goncalves, Kylie N. Moore, Syanah C. Wynn, Chantal E. Stern, Erika Nyhus

                Access: Open access

                Active navigation seems to yield better spatial knowledge than passive navigation, but it is unclear how active decision-making influences learning and memory. Here, we examined the contributions of theta oscillations to memory-related exploration while testing theories about how they contribute to active learning. Using electroencephalography (EEG), we tested individuals on a maze-learning task in which they made discrete decisions about where to explore at each choice point in the maze. Half the participants were free to make active decisions at each choice point, and the other half passively explored by selecting a marked choice (matched to active exploration) at each intersection. Critically, all decisions were made when stationary, decoupling the active decision-making process from movement and speed factors, which is another prominent potential role for theta oscillations. Participants were then tested on their knowledge of the maze by traveling from object A to object B within the maze. Results show an advantage for active decision-making during learning and indicate that the active group had greater theta power during choice points in exploration, particularly in midfrontal channels. These findings demonstrate that active exploration is associated with theta oscillations during human spatial navigation, and that these oscillations are not exclusively related to movement or speed. Results demonstrating increased theta oscillations in prefrontal regions suggest communication with the hippocampus and integration of new information into memory. We also found evidence for alpha oscillations during active navigation, suggesting a role for attention as well. This study finds support for a general mnemonic role for theta oscillations during navigational learning. © 2022


                Large-scale chromosomal changes and associated fitness consequences in pathogenic fungi

                Date: 2014-01-01

                Creator: Anja Forche

                Access: Open access

                Pathogenic fungi encounter many different host environments to which they must adapt rapidly to ensure growth and survival. They also must be able to cope with alterations in established niches during long-term persistence in the host. Many eukaryotic pathogens have evolved a highly plastic genome, and large-scale chromosomal changes including aneuploidy, and loss of heterozygosity (LOH) can arise under various in vitro and in vivo stresses. Both aneuploidy and LOH can arise quickly during a single cell cycle, and it is hypothesized that they provide a rapid, albeit imprecise, solution to adaptation to stress until better and more refined solutions can be acquired by the organism. While LOH, with the extreme case of haploidization in Candida albicans, can purge the genome from recessive lethal alleles and/or generate recombinant progeny with increased fitness, aneuploidy, in the absence or rarity of meiosis, can serve as a non-Mendelian mechanism for generating genomic variation. © Springer Science+Business Media 2014.