Showing 1 - 5 of 5 Items
Thompson's group F is not almost convex
Date: 2003-12-01
Creator: Sean Cleary, Jennifer Taback
Access: Open access
- We show that Thompson's group F does not satisfy Cannon's almost convexity condition AC(n) for any positive integer n with respect to the standard generating set with two elements. To accomplish this, we construct a family of pairs of elements at distance n from the identity and distance 2 from each other, which are not connected by a path lying inside the n-ball of length less than k for increasingly large k. Our techniques rely upon Fordham's method for calculating the length of a word in F and upon an analysis of the generators' geometric actions on the tree pair diagrams representing elements of F. © 2003 Elsevier Inc. All rights reserved.
Cone types and geodesic languages for lamplighter groups and Thompson's group F
Date: 2006-09-15
Creator: Sean Cleary, Murray Elder, Jennifer Taback
Access: Open access
- We study languages of geodesics in lamplighter groups and Thompson's group F. We show that the lamplighter groups Ln have infinitely many cone types, have no regular geodesic languages, and have 1-counter, context-free and counter geodesic languages with respect to certain generating sets. We show that the full language of geodesics with respect to one generating set for the lamplighter group is not counter but is context-free, while with respect to another generating set the full language of geodesics is counter and context-free. In Thompson's group F with respect to the standard finite generating set, we show there are infinitely many cone types and that there is no regular language of geodesics. We show that the existence of families of "seesaw" elements with respect to a given generating set in a finitely generated infinite group precludes a regular language of geodesics and guarantees infinitely many cone types with respect to that generating set. © 2005 Elsevier Inc. All rights reserved.
Random subgroups of Thompson's group F
Date: 2010-01-13
Creator: Sean Cleary, Murray Elder, Andrew Rechnitzer, Jennifer Taback
Access: Open access
- We consider random subgroups of Thompson's group F with respect to two natural stratifications of the set of all k-generator subgroups. We find that the isomorphism classes of subgroups which occur with positive density are not the same for the two stratifications. We give the first known examples of persistent subgroups, whose isomorphism classes occur with positive density within the set of k-generator subgroups, for all sufficiently large k. Additionally, Thompson's group provides the first example of a group without a generic isomorphism class of subgroup. Elements of F are represented uniquely by reduced pairs of finite rooted binary trees. We compute the asymptotic growth rate and a generating function for the number of reduced pairs of trees, which we show is D-finite (short for differentiably finite) and not algebraic. We then use the asymptotic growth to prove our density results. © European Mathematical Society.
Thompson's group F is 1-counter graph automatic
Date: 2016-05-01
Creator: Murray Elder, Jennifer Taback
Access: Open access
- It is not known whether Thompson's group F is automatic. With the recent extensions of the notion of an automatic group to graph automatic by Kharlampovich, Khoussainov and Miasnikov and then to C-graph automatic by the authors, a compelling question is whether F is graph automatic or C-graph automatic for an appropriate language class C. The extended definitions allow the use of a symbol alphabet for the normal form language, replacing the dependence on generating set. In this paper we construct a 1-counter graph automatic structure for F based on the standard infinite normal form for group elements.
Tree-based language complexity of Thompson's group F
Date: 2015-11-01
Creator: Jennifer Taback, Sharif Younes
Access: Open access
- The definition of graph automatic groups by Kharlampovich, Khoussainov and Miasnikov and its extension to C-graph automatic by Elder and the first author raise the question of whether Thompson's group F is graph automatic. We define a language of normal forms based on the combinatorial "caret types", which arise when elements of F are considered as pairs of finite rooted binary trees. The language is accepted by a finite state machine with two counters, and forms the basis of a 3-counter graph automatic structure for the group.