Showing 1 - 10 of 19 Items

Miniature of High Resolution Molecular Analysis of the Hedgehog Pathway in Tooth Development
High Resolution Molecular Analysis of the Hedgehog Pathway in Tooth Development
This record is embargoed.
    • Embargo End Date: 2026-05-20

    Date: 2021-01-01

    Creator: Claire Christine Havig

    Access: Embargoed



      Miniature of Determining the influence of proximal Zeste binding sites and promoters on rates of transvection
      Determining the influence of proximal Zeste binding sites and promoters on rates of transvection
      This record is embargoed.
        • Embargo End Date: 2026-05-17

        Date: 2023-01-01

        Creator: Molly Henderson

        Access: Embargoed



          Active and Passive Spatial Learning and Memory in Human Navigation

          Date: 2019-01-01

          Creator: Caroline Rice

          Access: Open access

          Previous studies show that active exploration of an environment contributes to spatial learning more than passive visual exposure (Chrastil & Warren, 2013; Chrastil & Warren, 2015). Active navigation and cognitive decision-making in a novel environment leads to increased spatial knowledge and memory of location compared to a passive exploration that removes the decision-making component. There is evidence of theta oscillations present in electroencephalography (EEG) recordings from the hippocampus and pre-frontal cortex (PFC). These low-frequency waves could reflect spatial navigation and memory performance, suggested by their involvement in communication between the formerly named brain regions. Through communication with the hippocampus, theta oscillations could be involved in the integration of new spatial information into memory. While undergoing EEG, subjects in this study either actively or passively explored a virtual maze, identified as the “Free” or “Guided” groups, respectively. After exploring, subjects’ spatial memory of the maze was tested through a task that required navigation from a starting object to a target object. Behavioral data show increased spatial memory for the Free group, indicated by significantly greater navigation to the correct target object in the memory task. EEG results indicate significantly greater theta oscillations in frontal regions for the Free group during the exploration phase. These results support those found in previous studies and could indicate a correlation between frontal theta oscillations during learning of novel environments and spatial memory.


          Miniature of An Investigation on Data Gaps in Scope 3 Emissions Accounting and Disclosure using 2010-2021 Carbon Disclosure Project (CDP) Questionnaire Responses
          An Investigation on Data Gaps in Scope 3 Emissions Accounting and Disclosure using 2010-2021 Carbon Disclosure Project (CDP) Questionnaire Responses
          This record is embargoed.
            • Embargo End Date: 2027-05-17

            Date: 2022-01-01

            Creator: Samara Nassor

            Access: Embargoed



              Miniature of Chromatin-conformation differences in natural populations of <i>D. melanogaster</i>
              Chromatin-conformation differences in natural populations of D. melanogaster
              Access to this record is restricted to members of the Bowdoin community. Log in here to view.
              • Restriction End Date: 2026-06-01

                Date: 2021-01-01

                Creator: Nicholas J. Purchase

                Access: Access restricted to the Bowdoin Community



                  Semaphorin-Induced Plasticity in the Nervous System of the Cricket, Gryllus bimaculatus

                  Date: 2021-01-01

                  Creator: Alicia G. Edwards

                  Access: Open access

                  The adult auditory system of the cricket, Gryllus bimaculatus, exhibits a rare example of neuronal plasticity. Upon deafferentation, we observe medial dendrites that normally respect the midline of the PTG in the central nervous system sprouting across the boundary and forming synaptic connections with the contralateral auditory afferents. The Horch Lab has investigated key molecular factors that might play a causal role in this paradigm. Specifically, the protein Sema1a.2 comes from a guidance molecule family and has a role in developmental neuronal plasticity in other organisms. In this study, I explored the role of Sema1a.2 in the neuronal plasticity of the adult auditory system of the cricket by conducting a series of dsRNA knockdown experiments targeting Sema1a.2 followed by backfill procedures in which we iontophoresed dye into the Ascending Neurons (ANs) to visualize the anatomical effects of the knockdown experiments using confocal microscopy. We found that there were no significant differences between animals injected with dsRNA against GFP and Sema1a.2 volume, with respect to qualitative and quantitative data. However, we believe with an increase in cohort size, the trends observed, particularly the effect of Sema1a.2 knockdowns on CWM and CBM volumes, will become more pronounced and significant. Potential future pathways could include conducting double knockdowns of Sema1a.2 and Sema2a to observe if these two proteins are working together to create a more obvious effect on midline crossing and branching. Other options also include looking into other protein families that might be the causing factor in this rare phenomenon (toll-like receptors).


                  The role of behavioral diversity in determining the extent to which the cardiac ganglion is modulated in three species of crab

                  Date: 2020-01-01

                  Creator: Grace Bukowski-Thall

                  Access: Open access

                  Central pattern generators (CPGs) are neural networks that generate the rhythmic outputs that control behaviors such as locomotion, respiration, and chewing. The stomatogastric nervous system (STNS), which contains the CPGs that control foregut movement, and the cardiac ganglion (CG), which is a CPG that controls heartbeat, are two commonly studied systems in decapod crustaceans. Neuromodulators are locally or hormonally released neuropeptides and amines that change the output patterns of CPGs like the STNS and CG to allow behavioral flexibility. We have hypothesized that neuromodulation provides a substrate for the evolution of behavioral flexibility, and as a result, systems exhibiting more behavioral flexibility are modulated to a greater degree. To examine this hypothesis, we evaluated the extent to which the STNS and the CG are modulated in the majoid crab species Chionoecetes opilio, Libinia emarginata, and Pugettia producta. C. opilio and L. emarginata are opportunistic feeders, whereas P. producta has a highly specialized kelp diet. We predicted that opportunistic feeding crabs that chew and process a wide variety of food types would exhibit greater STNS neuromodulatory capacity than those with a specialized diet. The STNS of L. emarginata and C. opilio responded to the seven endogenous neuromodulators oxotremorine, dopamine, CabTrp Ia, CCAP, myosuppressin, proctolin, and RPCH, whereas the STNS of P. producta only responded to proctolin, oxotremorine, myosuppressin, RPCH (25% of the time), variably to dopamine, and not at all to CabTrp and CCAP. Because P. producta, L. emarginata, and C. opilio all belong to the Majoidea superfamily, their primary distinctions are their feeding habits. For this reason, we further predicted that there would be no relationship between diet and modulatory capacity in the cardiac ganglion (CG) of the neurogenic heart. This would suggest that a lack of STNS modulatory capacity in P. producta relative to L. emarginata and C. opilio is specific to evolved foregut function. Whole-heart recordings from P. producta indicated that, unlike the STNS, the CG responds to CabTrp and CCAP. P. producta hearts also responded to oxotremorine and inconsistently to dopamine and proctolin. The CG of C. opilio was modulated by CabTrp, CCAP, dopamine, proctolin, myosuppressin, and oxotremorine, but not RPCH. The CG of L. emarginata responded to CCAP, and inconsistently to CabTrp, dopamine, and proctolin, but not to myosuppressin, RPCH, and surprisingly oxotremorine. Although cardiac responses were not identical between species, opportunistic and specialist feeders responded more similarly to the modulators tested in the heart than in the STNS. Notably, P. producta responded to each modulator in a similar manner to C. opilio and/or L. emarginata. However, L. emarginata’s surprising lack of cardiac response to oxotremorine suggests that phylogenetic closeness may not control for differences in CG and STNS function between species. Nevertheless, sample sizes of all three species were quite small, and individual differences lead to inconsistencies in the data. As a result, sample size must be enlarged to draw firm conclusions.


                  Determining the sites at which neuromodulators exert peripheral effects in the cardiac neuromuscular system of the American Lobster, Homarus americanus

                  Date: 2021-01-01

                  Creator: Audrey Elizabeth Jordan

                  Access: Open access

                  Networks of neurons known as central pattern generators (CPGs) generate rhythmic patterns of output to drive behaviors like locomotion. CPGs are relatively fixed networks that produce consistent patterns in the absence of other inputs. The heart contractions of the Homarus americanus are neurogenic and controlled by the CPG known as the cardiac ganglion. Neuromodulators can enable flexibility in CPG motor output, and also on muscle contractions by acting on the neuromuscular junction and the muscle itself. A tissue-specific transcriptome gleaned from the cardiac ganglion and cardiac muscle of the American lobster was used to predict the sites and sources of a variety of crustacean neuromodulators. If corresponding receptors were predicted to be expressed in the cardiac muscle, then it was hypothesized that the neuropeptide had peripheral effects. One peptide for which a cardiac muscle receptor was identified is myosuppressin. Myosuppressin has been shown to have modulatory effects at the cardiac neuromuscular system of the American lobster. In previous research, myosuppressin had modulatory effects on the periphery of cardiac neuromuscular system alone. It remains an open question of whether myosuppressin acts on the cardiac muscle directly, if it is exerting its effects at the neuromuscular junction (NMJ), or both. To test this, I performed physiological experiments on the isolated NMJ. Myosuppressin did not modulate the amplitude of the excitatory junction potentials. Since no modulatory effects were seen at the NMJ, the cardiac muscle was isolated from the cardiac ganglion and then glutamate-evoked contractions were stimulated. I showed that myosuppressin increased glutamate-evoked contraction amplitude. These data suggest myosuppressin exerts its peripheral effects at the cardiac muscle and not the NMJ.


                  Peripheral modulation of cardiac contractions in the American lobster, Homarus americanus, by the peptide myosuppressin is mediated by effects on the cardiac muscle itself

                  Date: 2023-01-01

                  Creator: Isabel Stella Petropoulos

                  Access: Open access

                  A substantial factor for behavioral flexibility is modulation — largely via neuropeptides — which occurs at multiple sites including neurons, muscles, and the neuromuscular junction (NMJ). Complex modulation distributed across multiple sites provides an interesting question: does modulation at multiple locations lead to greater dynamics than one receptor site alone? The cardiac neuromuscular system of the American lobster (Homarus americanus), driven by a central pattern generator called the cardiac ganglion (CG), is a model system for peptide modulation. The peptide myosuppressin (pQDLDHVFLRFamide) has been shown in the whole heart to decrease contraction frequency, largely due to its effects on the CG, as well as increase contraction amplitude by acting on periphery of the neuromuscular system, either at the cardiac muscle, the NMJ, or both. This set of experiments addresses the location(s) at which myosuppressin exerts its effects at the periphery. To elucidate myosuppressin’s effects on the cardiac muscle, the CG was removed, and muscle contractions were stimulated with L-glutamate while superfusing myosuppressin. Myosuppressin increased glutamate-evoked contraction amplitude in the isolated muscle, suggesting that myosuppressin exerts its peripheral effects directly on the cardiac muscle. To examine effects on the NMJ, excitatory junction potentials were evoked by stimulating of the motor nerve and intracellularly recording a single muscle fiber both in control saline and in the presence of myosuppressin. Myosuppressin did not modulate the amplitude of EJPs suggesting myosuppressin acts at the muscle and not at the NMJ, to cause an increase in contraction amplitude.


                  Monteverde: Ecology and Conservation of a Tropical Cloud Forest

                  Date: 2000-01-01

                  Creator: Nalini M. Nadkarni, Nathaniel T. Wheelwright

                  Access: Open access

                  The Monteverde Cloud Forest Reserve has captured the worldwide attention of biologists, conservationists, and ecologists and has been the setting for extensive investigation over the past 40 years. Roughly 40,000 ecotourists visit the Cloud Forest each year, and it is often considered the archetypal high-altitude rain forest. Featuring synthetic chapters and specific accounts written by more than 100 biologists and local residents, the 573-page book documents in a single volume everything known about the biological diversity of Monteverde, Costa Rica, and how to protect it. New short chapters which update and expand the research presented in the 2000 Oxford publication were written in 2014 and are now available.