Showing 1 - 10 of 11 Items

Three members of a peptide family are differentially distributed and elicit differential state-dependent responses in a pattern generator-effector system

Date: 2018-05-01

Creator: Patsy S. Dickinson, Matthew K. Armstrong, Evyn S. Dickinson, Rebecca Fernandez, Alexandra, Miller, Sovannarath Pong, Brian W. Powers, Alixander Pupo-Wiss, Meredith E. Stanhope, Patrick J. Walsh, Teerawat Wiwatpanit, Andrew E. Christie

Access: Open access

C-type allatostatins (AST-Cs) are pleiotropic neuropeptides that are broadly conserved within arthropods; the presence of three AST-C isoforms, encoded by paralog genes, is common. However, these peptides are hypothesized to act through a single receptor, thereby exerting similar bioactivities within each species. We investigated this hypothesis in the American lobster, Homarus americanus, mapping the distributions of AST-C isoforms within relevant regions of the nervous system and digestive tract, and comparing their modulatory influences on the cardiac neuromuscular system. Immunohistochemistry showed that in the pericardial organ, a neuroendocrine release site, AST-C I and/or III and AST-C II are contained within distinct populations of release terminals. Moreover, AST-C I/III-like immunoreactivity was seen in midgut epithelial endocrine cells and the cardiac ganglion (CG), whereas AST-C II-like immunoreactivity was not seen in these tissues. These data suggest that AST-C I and/or III can modulate the CG both locally and hormonally; AST-C II likely acts on the CG solely as a hormonal modulator. Physiological studies demonstrated that all three AST-C isoforms can exert differential effects, including both increases and decreases, on contraction amplitude and frequency when perfused through the heart. However, in contrast to many state-dependent modulatory changes, the changes in contraction amplitude and frequency elicited by the AST-Cs were not functions of the baseline parameters. The responses to AST-C I and III, neither of which is COOH-terminally amidated, are more similar to one another than they are to the responses elicited by AST-C II, which is COOH-terminally amidated. These results suggest that the three AST-C isoforms are differentially distributed in the lobster nervous system/midgut and can elicit distinct behaviors from the cardiac neuromuscular system, with particular structural features, e.g., COOH-terminal amidation, likely important in determining the effects of the peptides. NEW & NOTEWORTHY Multiple isoforms of many peptides exert similar effects on neural circuits. In this study we show that each of the three isoforms of C-type allatostatin (AST-C) can exert differential effects, including both increases and decreases in contraction amplitude and frequency, on the lobster cardiac neuromuscular system. The distribution of effects elicited by the nonamidated isoforms AST-C I and III are more similar to one another than to the effects of the amidated AST-C II.


Distinct or shared actions of peptide family isoforms: II. Multiple pyrokinins exert similar effects in the lobster stomatogastric nervous system

Date: 2015-09-01

Creator: Patsy S. Dickinson, Sienna C. Kurland, Xuan Qu, Brett O. Parker, Anirudh, Sreekrishnan, Molly A. Kwiatkowski, Alex H. Williams, Alexandra B. Ysasi, Andrew E. Christie

Access: Open access

Many neuropeptides are members of peptide families, with multiple structurally similar isoforms frequently found even within a single species. This raises the question of whether the individual peptides serve common or distinct functions. In the accompanying paper, we found high isoform specificity in the responses of the lobster (Homarus americanus) cardiac neuromuscular system to members of the pyrokinin peptide family: only one of five crustacean isoforms showed any bioactivity in the cardiac system. Because previous studies in other species had found little isoform specificity in pyrokinin actions, we examined the effects of the same five crustacean pyrokinins on the lobster stomatogastric nervous system (STNS). In contrast to our findings in the cardiac system, the effects of the five pyrokinin isoforms on the STNS were indistinguishable: they all activated or enhanced the gastric mill motor pattern, but did not alter the pyloric pattern. These results, in combination with those from the cardiac ganglion, suggest that members of a peptide family in the same species can be both isoform specific and highly promiscuous in their modulatory capacity. The mechanisms that underlie these differences in specificity have not yet been elucidated; one possible explanation, which has yet to be tested, is the presence and differential distribution of multiple receptors for members of this peptide family.


Differential neuropeptide modulation of premotor and motor neurons in the lobster cardiac ganglion

Date: 2020-10-01

Creator: Emily R. Oleisky, Meredith E. Stanhope, J. Joe Hull, Andrew E. Christie, Patsy S., Dickinson

Access: Open access

The American lobster, Homarus americanus, cardiac neuromuscular system is controlled by the cardiac ganglion (CG), a central pattern generator consisting of four premotor and five motor neurons. Here, we show that the premotor and motor neurons can establish independent bursting patterns when decoupled by a physical ligature. We also show that mRNA encoding myosuppressin, a cardioactive neuropeptide, is produced within the CG. We thus asked whether myosuppressin modulates the decoupled premotor and motor neurons, and if so, how this modulation might underlie the role(s) that these neurons play in myosuppressin's effects on ganglionic output. Although myosuppressin exerted dose-dependent effects on burst frequency and duration in both premotor and motor neurons in the intact CG, its effects on the ligatured ganglion were more complex, with different effects and thresholds on the two types of neurons. These data suggest that the motor neurons are more important in determining the changes in frequency of the CG elicited by low concentrations of myosuppressin, whereas the premotor neurons have a greater impact on changes elicited in burst duration. A single putative myosuppressin receptor (MSR-I) was previously described from the Homarus nervous system. We identified four additional putative MSRs (MSR-II-V) and investigated their individual distributions in the CG premotor and motor neurons using RT-PCR. Transcripts for only three receptors (MSR-II-IV) were amplified from the CG. Potential differential distributions of the receptors were observed between the premotor and motor neurons; these differences may contribute to the distinct physiological responses of the two neuron types to myosuppressin. NEW & NOTEWORTHY Premotor and motor neurons of the Homarus americanus cardiac ganglion (CG) are normally electrically and chemically coupled, and generate rhythmic bursting that drives cardiac contractions; we show that they can establish independent bursting patterns when physically decoupled by a ligature. The neuropeptide myosuppressin modulates different aspects of the bursting pattern in these neuron types to determine the overall modulation of the intact CG. Differential distribution of myosuppressin receptors may underlie the observed responses to myosuppressin.


Animal-to-animal variability in the phasing of the crustacean cardiac motor pattern: An experimental and computational analysis

Date: 2013-01-01

Creator: Alex H. Williams, Molly A. Kwiatkowski, Adam L. Mortimer, Eve Marder, Mary Lou, Zeeman, Patsy S. Dickinson

Access: Open access

The cardiac ganglion (CG) of Homarus americanus is a central pattern generator that consists of two oscillatory groups of neurons: "small cells" (SCs) and "large cells" (LCs). We have shown that SCs and LCs begin their bursts nearly simultaneously but end their bursts at variable phases. This variability contrasts with many other central pattern generator systems in which phase is well maintained. To determine both the consequences of this variability and how CG phasing is controlled, we modeled the CG as a pair of Morris-Lecar oscillators coupled by electrical and excitatory synapses and constructed a database of 15,000 simulated networks using random parameter sets. These simulations, like our experimental results, displayed variable phase relationships, with the bursts beginning together but ending at variable phases. The model suggests that the variable phasing of the pattern has important implications for the functional role of the excitatory synapses. In networks in which the two oscillators had similar duty cycles, the excitatory coupling functioned to increase cycle frequency. In networks with disparate duty cycles, it functioned to decrease network frequency. Overall, we suggest that the phasing of the CG may vary without compromising appropriate motor output and that this variability may critically determine how the network behaves in response to manipulations. © 2013 the American Physiological Society.


Animal-to-animal variability in the phasing of the crustacean cardiac motor pattern: An experimental and computational analysis

Date: 2013-01-01

Creator: Alex H. Williams, Molly A. Kwiatkowski, Adam L. Mortimer, Eve Marder, Mary Lou, Zeeman, Patsy S. Dickinson

Access: Open access

The cardiac ganglion (CG) of Homarus americanus is a central pattern generator that consists of two oscillatory groups of neurons: "small cells" (SCs) and "large cells" (LCs). We have shown that SCs and LCs begin their bursts nearly simultaneously but end their bursts at variable phases. This variability contrasts with many other central pattern generator systems in which phase is well maintained. To determine both the consequences of this variability and how CG phasing is controlled, we modeled the CG as a pair of Morris-Lecar oscillators coupled by electrical and excitatory synapses and constructed a database of 15,000 simulated networks using random parameter sets. These simulations, like our experimental results, displayed variable phase relationships, with the bursts beginning together but ending at variable phases. The model suggests that the variable phasing of the pattern has important implications for the functional role of the excitatory synapses. In networks in which the two oscillators had similar duty cycles, the excitatory coupling functioned to increase cycle frequency. In networks with disparate duty cycles, it functioned to decrease network frequency. Overall, we suggest that the phasing of the CG may vary without compromising appropriate motor output and that this variability may critically determine how the network behaves in response to manipulations. © 2013 the American Physiological Society.


Similarities and differences in circuit responses to applied Gly 1 -SIFamide and peptidergic (Gly 1 -SIFamide) neuron stimulation

Date: 2019-03-01

Creator: Dawn M. Blitz, Andrew E. Christie, Aaron P. Cook, Patsy S. Dickinson, Michael P., Nusbaum

Access: Open access

Similarities and differences in circuit responses to applied Gly 1 -SIFamide and peptidergic (Gly 1 -SIFamide) neuron stimulation. J Neurophysiol 121: 950 –972, 2019. First published January 16, 2019; doi:10.1152/jn.00567.2018.—Microcircuit modulation by peptides is well established, but the cellular/synaptic mechanisms whereby identified neurons with identified peptide transmitters modulate microcircuits remain unknown for most systems. Here, we describe the distribution of GYRKPPFNGSIFamide (Gly 1 -SIFamide) immunoreactivity (Gly 1 -SIFamide-IR) in the stomatogastric nervous system (STNS) of the crab Cancer borealis and the Gly 1 -SIFamide actions on the two feeding-related circuits in the stomatogastric ganglion (STG). Gly 1 -SIFamide-IR localized to somata in the paired commissural ganglia (CoGs), two axons in the nerves connecting each CoG with the STG, and the CoG and STG neuropil. We identified one Gly 1 -SIFamide-IR projection neuron innervating the STG as the previously identified modulatory commissural neuron 5 (MCN5). Brief (~10 s) MCN5 stimulation excites some pyloric circuit neurons. We now find that bath applying Gly 1 -SIFamide to the isolated STG also enhanced pyloric rhythm activity and activated an imperfectly coordinated gastric mill rhythm that included unusually prolonged bursts in two circuit neurons [inferior cardiac (IC), lateral posterior gastric (LPG)]. Furthermore, longer duration (±30 s) MCN5 stimulation activated a Gly 1 -SIFamide-like gastric mill rhythm, including prolonged IC and LPG bursting. The prolonged LPG bursting decreased the coincidence of its activity with neurons to which it is electrically coupled. We also identified local circuit feedback onto the MCN5 axon terminals, which may contribute to some distinctions between the responses to MCN5 stimulation and Gly 1 -SIFamide application. Thus, MCN5 adds to the few identified projection neurons that modulate a well-defined circuit at least partly via an identified neuropeptide transmitter and provides an opportunity to study peptide regulation of electrical coupled neurons in a functional context. NEW & NOTEWORTHY Limited insight exists regarding how identified peptidergic neurons modulate microcircuits. We show that the modulatory projection neuron modulatory commissural neuron 5 (MCN5) is peptidergic, containing Gly 1 -SIFamide. MCN5 and Gly 1 -SIFamide elicit similar output from two well-defined motor circuits. Their distinct actions may result partly from circuit feedback onto the MCN5 axon terminals. Their similar actions include eliciting divergent activity patterns in normally coactive, electrically coupled neurons, providing an opportunity to examine peptide modulation of electrically coupled neurons in a functional context.


SIFamide peptides modulate cardiac activity differently in two species of Cancer crab

Date: 2019-10-01

Creator: Patsy S. Dickinson, Heidi M. Samuel, Elizabeth A. Stemmler, Andrew E. Christie

Access: Open access

The SIFamides are a broadly conserved arthropod peptide family characterized by the C-terminal motif –SIFamide. In decapod crustaceans, two isoforms of SIFamide are known, GYRKPPFNGSIFamide (Gly1-SIFamide), which is nearly ubiquitously conserved in the order, and VYRKPPFNGSIFamide (Val1-SIFamide), known only from members of the astacidean genus Homarus. While much work has focused on the identification of SIFamide isoforms in decapods, there are few direct demonstrations of physiological function for members of the peptide family in this taxon. Here, we assessed the effects of Gly1- and Val1-SIFamide on the cardiac neuromuscular system of two closely related species of Cancer crab, Cancer borealis and Cancer irroratus. In each species, both peptides were cardioactive, with identical, dose-dependent effects elicited by both isoforms in a given species. Threshold concentrations for bioactivity are in the range typically associated with hormonal delivery, i.e., 10−9 to 10−8 M. Interestingly, and quite surprisingly, while the predicted effects of SIFamide on cardiac output are similar in both C. borealis and C. irroratus, frequency effects predominate in C. borealis, while amplitude effects predominate in C. irroratus. These findings suggest that, while SIFamide is likely to increase cardiac output in both crabs, the mechanism through which this is achieved is different in the two species. Immunohistochemical/mass spectrometric data suggest that SIFamide is delivered to the heart hormonally rather than locally, with the source of hormonal release being midgut epithelial endocrine cells in both Cancer species. If so, midgut-derived SIFamide may function as a regulator of cardiac output during the process of digestion.


SIFamide peptides modulate cardiac activity differently in two species of Cancer crab

Date: 2019-10-01

Creator: Patsy S. Dickinson, Heidi M. Samuel, Elizabeth A. Stemmler, Andrew E. Christie

Access: Open access

The SIFamides are a broadly conserved arthropod peptide family characterized by the C-terminal motif –SIFamide. In decapod crustaceans, two isoforms of SIFamide are known, GYRKPPFNGSIFamide (Gly1-SIFamide), which is nearly ubiquitously conserved in the order, and VYRKPPFNGSIFamide (Val1-SIFamide), known only from members of the astacidean genus Homarus. While much work has focused on the identification of SIFamide isoforms in decapods, there are few direct demonstrations of physiological function for members of the peptide family in this taxon. Here, we assessed the effects of Gly1- and Val1-SIFamide on the cardiac neuromuscular system of two closely related species of Cancer crab, Cancer borealis and Cancer irroratus. In each species, both peptides were cardioactive, with identical, dose-dependent effects elicited by both isoforms in a given species. Threshold concentrations for bioactivity are in the range typically associated with hormonal delivery, i.e., 10−9 to 10−8 M. Interestingly, and quite surprisingly, while the predicted effects of SIFamide on cardiac output are similar in both C. borealis and C. irroratus, frequency effects predominate in C. borealis, while amplitude effects predominate in C. irroratus. These findings suggest that, while SIFamide is likely to increase cardiac output in both crabs, the mechanism through which this is achieved is different in the two species. Immunohistochemical/mass spectrometric data suggest that SIFamide is delivered to the heart hormonally rather than locally, with the source of hormonal release being midgut epithelial endocrine cells in both Cancer species. If so, midgut-derived SIFamide may function as a regulator of cardiac output during the process of digestion.


In silico analyses suggest the cardiac ganglion of the lobster, Homarus americanus, contains a diverse array of putative innexin/innexin-like proteins, including both known and novel members of this protein family

Date: 2020-06-01

Creator: Andrew E. Christie, J. Joe Hull, Patsy S. Dickinson

Access: Open access

Gap junctions are physical channels that connect adjacent cells, permitting the flow of small molecules/ions between the cytoplasms of the coupled units. Innexin/innexin-like proteins are responsible for the formation of invertebrate gap junctions. Within the nervous system, gap junctions often function as electrical synapses, providing a means for coordinating activity among electrically coupled neurons. While some gap junctions allow the bidirectional flow of small molecules/ions between coupled cells, others permit flow in one direction only or preferentially. The complement of innexins present in a gap junction determines its specific properties. Thus, understanding innexin diversity is key for understanding the full potential of electrical coupling in a species/system. The decapod crustacean cardiac ganglion (CG), which controls cardiac muscle contractions, is a simple pattern-generating neural network with extensive electrical coupling among its circuit elements. In the lobster, Homarus americanus, prior work suggested that the adult neuronal innexin complement consists of six innexins (Homam-Inx1-4 and Homam-Inx6-7). Here, using a H. americanus CG-specific transcriptome, we explored innexin complement in this portion of the lobster nervous system. With the exception of Homam-Inx4, all of the previously described innexins appear to be expressed in the H. americanus CG. In addition, transcripts encoding seven novel putative innexins (Homam-Inx8-14) were identified, four (Homam-Inx8-11) having multiple splice variants, e.g., six for Homam-Inx8. Collectively, these data indicate that the innexin complement of the lobster nervous system in general, and the CG specifically, is likely significantly greater than previously reported, suggesting the possibility of expanded gap junction diversity and function in H. americanus.


Interaction of stretch feedback and beat regularity in response to AMGSEFLamide in the heart of Homarus americanus

Date: 2020-01-01

Creator: William Allen

Access: Open access

Central pattern generators (CPGs) are neural circuits whose component neurons possess intrinsic properties and synaptic connections that allow them to generate rhythmic motor outputs in the absence of descending inputs. The cardiac ganglion (CG) is a nine-cell CPG located in the American lobster, Homarus americanus. Stretch of the myocardium feeds back to the CG through mechano-sensitive dendrites and is thought to play a role in maintaining regularity in the beating pattern of the heart. The novel peptide AMGSEFLamide has been observed to induce irregular beating patterns when applied at high concentrations. This study investigated the interaction between stretch-related feedback and AMGSEFLamide modulation in generating irregular beating patterns in the whole heart of Homarus americanus. It was hypothesized that greater longitudinal stretch of the heart would result in greater regularity in the instantaneous beat frequency, based on previous findings that stretch-sensitive dendrites play a role in the regulation of the heartbeat. Furthermore, it was predicted that the elimination of stretch feedback via deafferentation of the heart would augment the irregularity induced by AMGSEFLamide. Data showed significantly increased irregularity in beating in response to 10-6 M AMGSEFLamide application. Longitudinal stretch did not reliably alter baseline variability in frequency, nor did it influence the modulatory effect of AMGSEFLamide. Deafferentation did not significantly alter baseline irregularity. Deafferented preparations did exhibit a trend of responding to AMGSEFLamide with a greater percent increase in irregularity compared to when afferents were intact, suggesting a potential role of stretch-stabilization in response to modulatory perturbations in the Homarus heart.