Showing 61 - 70 of 106 Items
Date: 2019-05-01
Creator: Anja Forche, Norma V. Solis, Marc Swidergall, Robert Thomas, Alison, Guyer, Annette Beach, Gareth A. Cromie, Giang T. Le, Emily Lowell, Norman Pavelka, Judith Berman, Aimeé M. Dudley, Anna Selmecki, Scott G. Filler
Access: Open access
- When the fungus Candida albicans proliferates in the oropharyngeal cavity during experimental oropharyngeal candidiasis (OPC), it undergoes large-scale genome changes at a much higher frequency than when it grows in vitro. Previously, we identified a specific whole chromosome amplification, trisomy of Chr6 (Chr6x3), that was highly overrepresented among strains recovered from the tongues of mice with OPC. To determine the functional significance of this trisomy, we assessed the virulence of two Chr6 trisomic strains and a Chr5 trisomic strain in the mouse model of OPC. We also analyzed the expression of virulence-associated traits in vitro. All three trisomic strains exhibited characteristics of a commensal during OPC in mice. They achieved the same oral fungal burden as the diploid progenitor strain but caused significantly less weight loss and elicited a significantly lower inflammatory host response. In vitro, all three trisomic strains had reduced capacity to adhere to and invade oral epithelial cells and increased susceptibility to neutrophil killing. Whole genome sequencing of pre- and post-infection isolates found that the trisomies were usually maintained. Most post-infection isolates also contained de novo point mutations, but these were not conserved. While in vitro growth assays did not reveal phenotypes specific to de novo point mutations, they did reveal novel phenotypes specific to each lineage. These data reveal that during OPC, clones that are trisomic for Chr5 or Chr6 are selected and they facilitate a commensal-like phenotype.

Date: 2020-01-01
Creator: Julianne Scholes
Access: Access restricted to the Bowdoin Community
Date: 2018-02-13
Creator: Robert S. Ross, Andrew Smolen, Tim Curran, Erika Nyhus
Access: Open access
- A critical problem for developing personalized treatment plans for cognitive disruptions is the lack of understanding how individual differences influence cognition. Recognition memory is one cognitive ability that varies from person to person and that variation may be related to different genetic phenotypes. One gene that may impact recognition memory is the monoamine oxidase A gene (MAO-A), which influences the transcription rate of MAO-A. Examination of how MAO-A phenotypes impact behavioral and event-related potentials (ERPs) correlates of recognition memory may help explain individual differences in recognition memory performance. Therefore, the current study uses electroencephalography (EEG) in combination with genetic phenotyping of the MAO-A gene to determine how well-characterized ERP components of recognition memory, the early frontal old/new effect, left parietal old/new effect, late frontal old/new effect, and the late posterior negativity (LPN) are impacted by MAO-A phenotype during item and source memory. Our results show that individuals with the MAO-A phenotype leading to increased transcription have lower response sensitivity during both item and source memory. Additionally, during item memory the left parietal old/new effect is not present due to increased ERP amplitude for correct rejections. The results suggest that MAO-A phenotype changes EEG correlates of recognition memory and influences how well individuals differentiate between old and new items.
Date: 2009-08-04
Creator: Erika Nyhus, Tim Curran
Access: Open access
- The present experiments examined how semantic vs. perceptual encoding and perceptual match affect the processes involved in recognition memory. Experiment 1 examined the effects of encoding task and perceptual match between study and test fonts on recognition discrimination for words. Font fan was used to determine the effect of distinctiveness on perceptual match. The semantic encoding task and perceptual match for distinctive items led to better recognition memory. Event-related brain potentials (ERPs) recorded from the human scalp during recognition memory experiments have revealed differences between old (studied) and new (not studied) items that are thought to reflect the activity of memory-related brain processes. In Experiment 2, the semantic encoding task and perceptual match for distinctive words led to better recognition memory by acting on both familiarity and recollection processes, as purportedly indexed by the FN400 and parietal old/new effects. Combined these results suggest that the semantic encoding task and perceptual match for distinctive items aid recognition memory by acting on both familiarity and recollection processes. © 2009 Elsevier B.V. All rights reserved.
Date: 2018-07-01
Creator: Anja Forche, Gareth Cromie, Aleeza C. Gerstein, Norma V. Solis, Tippapha, Pisithkul, Waracharee Srifa, Eric Jeffery, Darren Abbey, Scott G. Filler, Aimée M. Dudley, Judith Berman
Access: Open access
- In vitro studies suggest that stress may generate random standing variation and that different cellular and ploidy states may evolve more rapidly under stress. Yet this idea has not been tested with pathogenic fungi growing within their host niche in vivo. Here, we analyzed the generation of both genotypic and phenotypic diversity during exposure of Candida albicans to the mouse oral cavity. Ploidy, aneuploidy, loss of heterozygosity (LOH), and recombination were determined using flow cytometry and double digest restriction site-associated DNA sequencing. Colony phenotypic changes in size and filamentous growth were evident without selection and were enriched among colonies selected for LOH of the GAL1 marker. Aneuploidy and LOH occurred on all chromosomes (Chrs), with aneuploidy more frequent for smaller Chrs and whole Chr LOH more frequent for larger Chrs. Large genome shifts in ploidy to haploidy often maintained one or more heterozygous disomic Chrs, consistent with random Chr missegregation events. Most isolates displayed several different types of genomic changes, suggesting that the oral environment rapidly generates diversity de novo. In sharp contrast, following in vitro propagation, isolates were not enriched for multiple LOH events, except in those that underwent haploidization and/or had high levels of Chr loss. The frequency of events was overall 100 times higher for C. albicans populations following in vivo passage compared with in vitro. These hyper-diverse in vivo isolates likely provide C. albicans with the ability to adapt rapidly to the diversity of stress environments it encounters inside the host.
Date: 2020-01-01
Creator: Benjamin Harley Wong
Access: Open access
- Neuropeptides are important modulators of neural activity, allowing neural networks, such as the central pattern generators (CPGs) that control rhythmic movements, to alter their output and thus generate behavioral flexibility. Isoforms of a neuropeptide family vary in physical structure, allowing potentially distinct functional neuromodulatory effects on CPG systems. While some familial neuropeptide isoforms can differentially affect a system, others in the same family may elicit indistinguishable effects. Here, we examined the effects elicited by members of a novel family of six peptide hormone isoforms (GSEFLamides: I-, M-, AL-, AM-, AV-, and VM-GSEFLamide) on the pyloric filter and gastric mill CPGs in the stomatogastric nervous system (STNS) of the American lobster, Homarus americanus. Recent unpublished work from the Dickinson lab found that five of the six GSEFLamides elicited similar increases in contraction amplitude when perfused through the isolated lobster heart, while one (AVGSEFLamide) had virtually no effect. Using extracellular recordings, we found the pattern of GSEFLamide effects on the STNS gastric mill to be similar to the pattern observed in the lobster cardiac system; the gastric mill circuit was fairly consistently activated by all isoforms except AVGSEFLamide. The intrinsically active pyloric pattern was also significantly enhanced by three out of five peptide isoforms, and nearly significantly enhanced by two more, but was likewise non-responsive to AVGSEFLamide. While the reason AVGSEFLamide had no effect on either pattern is unknown, the similar phenomenon noted in the isolated whole heart potentially indicates that this isoform lacks any function in the lobster.

- Embargo End Date: 2025-05-13
Date: 2020-01-01
Creator: Samuel G. Brill-Weil
Access: Embargoed
Date: 2014-05-01
Creator: Elizabeth A Owens
Access: Open access
- The American lobster, Homarus americanus, inhabits a large oceanic range spanning from Labrador, Canada to North Carolina, USA. This geographic range varies in temperature by as much as 25ºC, and daily temperature fluctuations of up to 12ºC may occur at a single location depending on season, water depth, and tides. The cardiac system of the lobster is sensitive to these temperature changes, and has been shown to adjust its functioning over a large temperature range. A previous study showed that various functional parameters respond differently to temperature changes, but a stable cardiac output can be maintained over the range of 2-20ºC. The current study showed that the effects of temperature were exerted primarily through changes in the lobster heart central pattern generator, the cardiac ganglion. Similar patterns of change were seen in both semi-intact hearts and isolated cardiac ganglion preparations in response to increasing temperature. Specifically, with increasing temperature, the burst frequency showed a biphasic pattern in which frequency initially increased, then decreased rapidly at high temperatures. The burst duration, duty cycle, and number of spikes per burst generally decreased with increasing temperature, and spike frequency increased over the entire temperature range. Semi-intact hearts and isolated cardiac ganglia showed similar “crash” patterns, characterized by complete loss of function at high temperatures and complete recovery of function when temperature was returned to baseline. Feedback in the semi-intact heart provided some stabilization of bursting activity, but it did not provide the expected protection from high temperatures. The isolated CG had a significantly higher crash temperature than did the semi-intact system. This discrepancy in crash temperatures may be explained by considering factors at the level of the muscle and neuromuscular junction (NMJ), such as stretch and nitric oxide (NO) feedback and the balance of facilitation and depression at the NMJ. Stimulated preparations showed defacilitation of contraction amplitude at high temperatures despite the maintenance of constant burst parameters of stimulation. Therefore, several factors contributing to the relatively low crash temperature of the intact system may be a shift in the balance of facilitation and depression at the NMJ, a depression in ganglion function due to the release of NO by the muscle, or a combination of the two mechanisms.
Date: 2022-01-01
Creator: Hannah Tess Scotch
Access: Open access
- The auditory system of the Mediterranean field cricket (Gryllus bimaculatus) is capable of profound compensatory plasticity. Following deafferentation due to the loss of an auditory organ, the dendrites of intermediate auditory neuron Ascending Neuron 2 (AN-2) grow across the midline and functionally connect to contralateral afferents. The loss of the auditory organ can be mimicked with reversible cold-deactivation, in which cooled Peltier elements silence the auditory organ and its afferents. Though this would presumably prevent AN-2 from firing, cooling instead induces a novel firing pattern called DOPE (delayed-onset, prolonged-excitation). In this study, intracellular physiological recordings were completed before, during, and after cooling in response to “chirp” and “pulse” sounds. Analysis was performed within and across crickets to characterize DOPE. Results revealed expected variability across individuals, as well as a wider spread of onset delay and a decrease in spike frequency and number of spikes per burst relative to baseline within individuals during cooling. Generally, subsequent warming only partially restored the neuronal responses to baseline as measured by all three parameters. This was particularly true in response to “pulse” stimuli. Future experiments will investigate if DOPE is caused by synaptic inputs or intrinsic properties of AN-2, as well as the role of inhibition in the circuit. Eventually, we hope to develop a complete model of the auditory circuit for future investigations of plasticity, with ramifications for treating human neuronal injury.

- Restriction End Date: 2025-06-01
Date: 2022-01-01
Creator: Seneca N. Ellis
Access: Access restricted to the Bowdoin Community