Showing 41 - 50 of 106 Items

Partner choice in spontaneous mitotic recombination in wild type and homologous recombination mutants of Candida albicans

Date: 2019-11-01

Creator: Alberto Bellido, Toni Ciudad, Belén Hermosa, Encarnación Andaluz, Anja, Forche, Germán Larriba

Access: Open access

Candida albicans, the most common fungal pathogen, is a diploid with a genome that is rich in repeats and has high levels of heterozygosity. To study the role of different recombination pathways on direct-repeat recombination, we replaced either allele of the RAD52 gene (Chr6) with the URA-blaster cassette (hisG-URA3-hisG), measured rates of URA3 loss as resistance to 5-fluoroorotic acid (5FOAR) and used CHEF Southern hybridization and SNP-RFLP analysis to identify recombination mechanisms and their frequency in wildtype and recombination mutants. FOAR rates varied little across different strain backgrounds. In contrast, the type and frequency of mechanisms underlying direct repeat recombination varied greatly. For example, wildtype, rad59 and lig4 strains all displayed a bias for URA3 loss via pop-out/deletion vs. inter-homolog recombination and this bias was reduced in rad51 mutants. In addition, in rad51-derived 5FOAR strains direct repeat recombination was associated with ectopic translocation (5%), chromosome loss/truncation (14%) and inter-homolog recombination (6%). In the absence of RAD52, URA3 loss was mostly due to chromosome loss and truncation (80–90%), and the bias of retained allele frequency points to the presence of a recessive lethal allele on Chr6B. However, a few single-strand annealing (SSA)-like events were identified and these were independent of either Rad59 or Lig4. Finally, the specific sizes of Chr6 truncations suggest that the inserted URA-blaster could represent a fragile site.


A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans

Date: 2006-04-01

Creator: Alix Coste, Vincent Turner, Françoise Ischer, Joachim Morschhäuser, Anja, Forche, Anna Selmecki, Judith Berman, Jacques Bille, Dominique Sanglard

Access: Open access

TAC1, a Candida albicans transcription factor situated near the mating-type locus on chromosome 5, is necessary for the upregulation of the ABC-transporter genes CDR1 and CDR2, which mediate azole resistance. We showed previously the existence of both wild-type and hyperactive TAC1 alleles. Wild-type alleles mediate upregulation of CDR1 and CDR2 upon exposure to inducers such as fluphenazine, while hyperactive alleles result in constitutive high expression of CDR1 and CDR2. Here we recovered TAC1 alleles from two pairs of matched azole-susceptible (DSY294; FH1: heterozygous at mating-type locus) and azole-resistant isolates (DSY296; FH3: homozygous at mating-type locus). Two different TAC1 wild-type alleles were recovered from DSY294 (TAC1-3 and TAC1-4) while a single hyperactive allele (TAC1-5) was isolated from DSY296. A single amino acid (aa) difference between TAC1-4 and TAC1-5 (Asn977 to Asp or N977D) was observed in a region corresponding to the predicted activation domain of Tac1p. Two TAC1 alleles were recovered from FH1 (TAC1-6 and TAC1-7) and a single hyperactive allele (TAC1-7) was recovered from FH3. The N977D change was seen in TAC1-7 in addition to several other aa differences. The importance of N977D in conferring hyperactivity to TAC1 was confirmed by site-directed mutagenesis. Both hyperactive alleles TAC1-5 and TAC1-7 were codominant with wild-type alleles and conferred hyperactive phenotypes only when homozygous. The mechanisms by which hyperactive alleles become homozygous was addressed by comparative genome hybridization and single nucleotide polymorphism arrays and indicated that loss of TAC1 heterozygosity can occur by recombination between portions of chromosome 5 or by chromosome 5 duplication. Copyright © 2006 by the Genetics Society of America.


Demonstration of loss of heterozygosity by single-nucleotide polymorphism microarray analysis and alterations in strain morphology in Candida albicans strains during infection

Date: 2005-01-01

Creator: Anja Forche, Georgiana May, P. T. Magee

Access: Open access

Candida albicans is a diploid yeast with a predominantly clonal mode of reproduction, and no complete sexual cycle is known. As a commensal organism, it inhabits a variety of niches in humans. It becomes an opportunistic pathogen in immunocompromised patients and can cause both superficial and disseminated infections. It has been demonstrated that genome rearrangement and genetic variation in isolates of C. albicans are quite common. One possible mechanism for generating genome-level variation among individuals of this primarily clonal fungus is mutation and mitotic recombination leading to loss of heterozygosity (LOH). Taking advantage of a recently published genome-wide single-nucleotide polymorphism (SNP) map (A. Forche, P. T. Magee, B. B. Magee, and G. May, Eukaryot. Cell 3:705-714, 2004), an SNP microarray was developed for 23 SNP loci residing on chromosomes 5, 6, and 7. It was used to examine 21 strains previously shown to have undergone mitotic recombination at the GAL1 locus on chromosome 1 during infection in mice. In addition, karyotypes and morphological properties of these strains were evaluated. Our results show that during in vivo passaging, LOH events occur at observable frequencies, that such mitotic recombination events occur independently in different loci across the genome, and that changes in karyotypes and alterations of phenotypic characteristics can be observed alone, in combination, or together with LOH.


Functional role of gamma and theta oscillations in episodic memory

Date: 2010-06-01

Creator: Erika Nyhus, Tim Curran

Access: Open access

The primary aim of this review is to examine evidence for a functional role of gamma and theta oscillations in human episodic memory. It is proposed here that gamma and theta oscillations allow for the transient interaction between cortical structures and the hippocampus for the encoding and retrieval of episodic memories as described by the hippocampal memory indexing theory (Teyler and DiScenna, 1986). Gamma rhythms can act in the cortex to bind perceptual features and in the hippocampus to bind the rich perceptual and contextual information from diverse brain regions into episodic representations. Theta oscillations act to temporally order these individual episodic memory representations. Through feedback projections from the hippocampus to the cortex these gamma and theta patterns could cause the reinstatement of the entire episodic memory representation in the cortex. In addition, theta oscillations could allow for top-down control from the frontal cortex to the hippocampus modulating the encoding and retrieval of episodic memories. © 2009.


Evolution of pathogenicity and sexual reproduction in eight Candida genomes

Date: 2009-06-04

Creator: Geraldine Butler, Matthew D. Rasmussen, Michael F. Lin, Manuel A.S. Santos, Sharadha, Sakthikumar, Carol A. Munro, Esther Rheinbay, Manfred Grabherr, Anja Forche, Jennifer L. Reedy, Ino Agrafioti, Martha B. Arnaud, Steven Bates, Alistair J.P. Brown, Sascha Brunke, Maria C. Costanzo, David A. Fitzpatrick, Piet W.J. De Groot, David Harris, Lois L. Hoyer, Bernhard Hube, Frans M. Klis, Chinnappa Kodira, Nicola Lennard, Mary E. Logue, Ronny Martin, Aaron M. Neiman, Elissavet Nikolaou, Michael A. Quail, Janet Quinn, Maria C. Santos

Access: Open access

Candida species are the most common cause of opportunistic fungal infection worldwide. Here we report the genome sequences of six Candida species and compare these and related pathogens and non-pathogens. There are significant expansions of cell wall, secreted and transporter gene families in pathogenic species, suggesting adaptations associated with virulence. Large genomic tracts are homozygous in three diploid species, possibly resulting from recent recombination events. Surprisingly, key components of the mating and meiosis pathways are missing from several species. These include major differences at the mating-type loci (MTL); Lodderomyces elongisporus lacks MTL, and components of the a1/α2 cell identity determinant were lost in other species, raising questions about how mating and cell types are controlled. Analysis of the CUG leucine-to-serine genetic-code change reveals that 99% of ancestral CUG codons were erased and new ones arose elsewhere. Lastly, we revise the Candida albicans gene catalogue, identifying many new genes. © 2009 Macmillan Publishers Limited. All rights reserved.


FMRI and EEG predictors of dynamic decision parameters during human reinforcement learning

Date: 2015-01-01

Creator: Michael J. Frank, Chris Gagne, Erika Nyhus, Sean Masters, Thomas V., Wiecki, James F. Cavanagh, David Badre

Access: Open access

What are the neural dynamics of choice processes during reinforcement learning? Two largely separate literatures have examined dynamics of reinforcement learning (RL) as a function of experience but assuming a static choice process, or conversely, the dynamics of choice processes in decision making but based on static decision values. Here we show that human choice processes during RL are well described by a drift diffusion model (DDM) of decision making in which the learned trial-by-trial reward values are sequentially sampled, with a choice made when the value signal crosses a decision threshold. Moreover, simultaneous fMRI and EEG recordings revealed that this decision threshold is not fixed across trials but varies as a function of activity in the subthalamic nucleus (STN) and is further modulated by trial-by-trial measures of decision conflict and activity in the dorsomedial frontal cortex (pre-SMABOLDand mediofrontal theta in EEG). These findings provide converging multimodal evidence for a model in which decision threshold in reward-based tasks is adjusted as a function of communication from pre-SMA to STN when choices differ subtly in reward values, allowing more time to choose the statistically more rewarding option.


Mechanisms underlying variable responses to the neuropeptide C-type allatostatin (AST-C) across isoforms and among individuals in the American lobster, Homarus americanus

Date: 2020-01-01

Creator: Audrey J. Muscato

Access: Open access

Central pattern generators (CPGs) produce patterned outputs independent of sensory input. The cardiac neuromuscular system of the American lobster (Homarus americanus) is driven by a CPG called the cardiac ganglion (CG), which is composed of nine neurons, making it a model system of study. Modulation of CPGs allows for functional flexibility. One neuropeptide family that modulates the CG is C-type allatostatin (AST-C I-III). Previous research has shown variation in the responses of the CG across the three isoforms and among individuals. First, we investigated why AST-C I and III elicit responses that are more similar to each other than they are to the responses elicited by AST-C II. We hypothesized that an amino acid difference in the conserved sequence was responsible for the observed variation in responses. We synthesized isoforms of AST-C that replaced the endogenous amino acid and recorded responses to these isoforms. The identity of one particular amino acid in the conserved sequence seems to be responsible for variations in responses in frequency. Next, we focused on variation among individuals in their responses to AST-C I and III. We hypothesized that the mechanism behind this individual variation is differential expression of AST-C receptors and/or their downstream targets. We recorded physiological responses of the cardiac system to AST-C and then sequenced CG RNA from the same lobsters. Differential expression of one of the AST-C receptors and a number of downstream factors is correlated with physiological response. These findings inspire further experimentation investigating molt cycle as the underlying cause.


Miniature of Non-genomic effects of steroids on teleost fish olfaction: behavioral and anatomical approaches
Non-genomic effects of steroids on teleost fish olfaction: behavioral and anatomical approaches
Access to this record is restricted to members of the Bowdoin community. Log in here to view.

      Date: 2020-01-01

      Creator: Leah B Kratochvil

      Access: Access restricted to the Bowdoin Community



        Haplotype mapping of a diploid non-meiotic organism using existing and induced aneuploidies

        Date: 2008-01-01

        Creator: Melanie Legrand, Anja Forche, Anna Selmecki, Christine Chan, David T., Kirkpatrick, Judith Berman

        Access: Open access

        Haplotype maps (HapMaps) reveal underlying sequence variation and facilitate the study of recombination and genetic diversity. In general, HapMaps are produced by analysis of Single-Nucleotide Polymorphism (SNP) segregation in large numbers of meiotic progeny. Candida albicans, the most common human fungal pathogen, is an obligate diploid that does not appear to undergo meiosis. Thus, standard methods for haplotype mapping cannot be used. We exploited naturally occurring aneuploid strains to determine the haplotypes of the eight chromosome pairs in the C. albicans laboratory strain SC5314 and in a clinical isolate. Comparison of the maps revealed that the clinical strain had undergone a significant amount of genome rearrangement, consisting primarily of crossover or gene conversion recombination events. SNP map haplotyping revealed that insertion and activation of the UAU1 cassette in essential and non-essential genes can result in whole chromosome aneuploidy. UAU1 is often used to construct homozygous deletions of targeted genes in C. albicans; the exact mechanism (trisomy followed by chromosome loss versus gene conversion) has not been determined. UAU1 insertion into the essential ORC1 gene resulted in a large proportion of trisomic strains, while gene conversion events predominated when UAU1 was inserted into the non-essential LRO1 gene. Therefore, induced aneuploidies can be used to generate HapMaps, which are essential for analyzing genome alterations and mitotic recombination events in this clonal organism. © 2008 Legrand et al.


        Event-related potential correlates of interference effects on recognition memory

        Date: 2008-02-01

        Creator: Kenneth A. Norman, Katharine Tepe, Erika Nyhus, Tim Curran

        Access: Open access

        The question of interference (how new learning affects previously acquired knowledge and vice versa) is a central theoretical issue in episodic memory research, but very few human neuroimaging studies have addressed this question. Here, we used event-related potentials (ERPs) to test the predictions of the complementary learning systems (CLS) model regarding how list strength manipulations (strengthening some, but not all, items on a study list) affect recognition memory. Our analysis focused on the FN400 old-new effect, a hypothesized ERP correlate of familiarity-based recognition, and the parietal old-new effect, a hypothesized ERP correlate of recollection-based recognition. As is predicted by the CLS model, increasing list strength selectively reduced the ERP correlate of recollection-based discrimination, leaving the ERP correlate of familiarity-based discrimination intact. In a second experiment, we obtained converging evidence for the CLS model's predictions, using a remember/know test: Increasing list strength reduced recollection-based discrimination but did not reduce familiarity-based discrimination. Copyright 2008 Psychonomic Society, Inc.