Showing 21 - 30 of 106 Items

Directed interactions during episodic memory Access to this record is restricted to members of the Bowdoin community. Log in here to view.
- Restriction End Date: 2025-06-01
Date: 2020-01-01
Creator: Rhianna J Patel
Access: Access restricted to the Bowdoin Community
Modulation of the stretch feedback pathway in the cardiac neuromuscular system of the American lobster, Homarus americanus
Date: 2024-01-01
Creator: Karin van Hassel
Access: Open access
- The cardiac ganglion (CG) is a central pattern generator, a neural network that, when activated, produces patterned motor outputs such as breathing and walking. The CG induces the heart contractions of the American lobster, Homarus americanus, making the lobster heart neurogenic. In the American lobster, the CG is made up of nine neurons: four premotor pacemaker neurons that send signals to five motor neurons, causing bursts of action potentials from the motor neurons. These bursts cause cardiac muscle contractions that vary in strength based on the burst duration, frequency, and pattern. The activity of the CG is modulated by feedback pathways and neuromodulators, allowing for flexibility in the CG’s motor output and appropriate responses to changes in the animal’s environment. Two feedback pathways modulate the CG motor output, the excitatory cardiac muscle stretch and inhibitory nitric oxide feedback pathways. Despite our knowledge of the modulation of the CG by feedback pathways and neuromodulators separately, little is known about how neuromodulators influence the sensory feedback response to cardiac muscle stretch. I found one neuromodulator to modulate each phase of the stretch response differently, one neuromodulator to generally not affect the stretch response, and three neuromodulators to suppress the stretch response. These results suggest neuromodulators can act to produce flexibility in a CPG’s motor output, allowing the system to respond appropriately to changes in an organism’s environment, and allow for variation in CPG responses to different stimuli.
The role of modulation on the pyloric neurons and the neuromuscular junction in a pattern generator-effector system
Date: 2023-01-01
Creator: Jackie Seddon
Access: Open access
- Neuromodulation, the process of altering the electrical outputs of a neuron or neural circuit, allows an organism to control its physiological processes to meet the needs of both its internal and external environments. Previous work shows that the pyloric pattern of the kelp crab (Pugettia producta) stomatogastric nervous system (STNS) neurons responded to fewer neuromodulators than the Jonah crab (Cancer borealis). Since the kelp crab diet primarily eats kelp, it is possible that the movements of the foregut that control digestion may require less flexibility in functional output compared to an opportunistic feeder. To determine whether a reduced flexibility is correlated with diet, this study compared the modulatory responses in Pugettia to two other species of majoid crabs: Chionoecetes opilio and Libinia emarginata, which are both opportunistic feeders. Pooled data for this study found that Libinia and Chionoecetes responded to all twelve modulators tested. When considering the effect of modulators on stomatogastric ganglion (STG) motor outputs, we must consider whether these modulators also alter the excitatory junction potentials (EJPs) at the neuromuscular junction (NMJ), and whether there are differences in responses across species. To test this, the dorsal gastric nerve (dgn) was stimulated while recording intracellularly from the muscle fibers of the associated gm4 muscles. The NMJ of the gm4 in Cancer borealis did not appear to be broadly modulated, as only RPCH and CabTRP showed increases in amplitude, and RPCH decreased facilitation at 5 Hz.

The impact of plastic contaminants and neuroprotectants on spinal neural circuits controlling vertebrate locomotion This record is embargoed.
- Embargo End Date: 2026-05-18
Date: 2023-01-01
Creator: Violet Louise Rizzieri
Access: Embargoed

The role of pubertal hormones on female rats' sensitivity to acute ketamine treatment in an early-life-adversity model Access to this record is restricted to members of the Bowdoin community. Log in here to view.
Date: 2024-01-01
Creator: Nuanxi (Sissi) Feng
Access: Access restricted to the Bowdoin Community

Characterization and distribution of allatostatin type-C (AST-C) neuropeptides and receptors in crustaceans Access to this record is restricted to members of the Bowdoin community. Log in here to view.
Date: 2016-05-01
Creator: Tess Lameyer
Access: Access restricted to the Bowdoin Community
Genomic plasticity of the human fungal pathogen Candida albicans
Date: 2010-07-01
Creator: Anna Selmecki, Anja Forche, Judith Berman
Access: Open access
- The genomic plasticity of Candida albicans, a commensal and common opportunistic fungal pathogen, continues to reveal unexpected surprises. Once thought to be asexual, we now know that the organism can generate genetic diversity through several mechanisms, including mating between cells of the opposite or of the same mating type and by a parasexual reduction in chromosome number that can be accompanied by recombination events (2, 12, 14, 53, 77, 115). In addition, dramatic genome changes can appear quite rapidly in mitotic cells propagated in vitro as well as in vivo. The detection of aneuploidy in other fungal pathogens isolated directly from patients (145) and from environmental samples (71) suggests that variations in chromosome organization and copy number are a common mechanism used by pathogenic fungi to rapidly generate diversity in response to stressful growth conditions, including, but not limited to, antifungal drug exposure. Since cancer cells often become polyploid and/or aneuploid, some of the lessons learned from studies of genome plasticity in C. albicans may provide important insights into how these processes occur in higher-eukaryotic cells exposed to stresses such as anticancer drugs. © 2010, American Society for Microbiology.
Brain Networks Related to Beta Oscillatory Activityduring Episodic Memory Retrieval
Date: 2018-02-01
Creator: Erika Nyhus
Access: Open access
- Evidence from fMRI has consistently located a widespread network of frontal, parietal, and temporal lobe regions during episodic retrieval. However, the temporal limitations of the fMRI methodology have made it difficult to assess the transient network dynamics by which these distributed regions coordinate activity. Recent evidence suggests that beta oscillations (17-20 Hz) are important for top-down control for memory suppression. However, the spatial limitations of the EEG methodology make it difficult to assess the relationship between these oscillatory signals and the distributed networks identified with fMRI. This study used simultaneous EEG/fMRI to identify networks related to beta oscillations during episodic retrieval. Participants studied adjectives and either imagined a scene (Place Task) or judged its pleasantness (Pleasant Task). During the recognition test, participants decided which task was performed with each word (“Old Place Task” or “Old Pleasant Task”) or “New.” EEG results revealed that posterior beta power was greater for new than old words. fMRI results revealed activity in a frontal, parietal network that was greater for old than new words, consistent with prior studies. Although overall beta power increases correlated with decreased activity within a predominantly parietal network, within the right dorsolateral and ventrolateral pFC, beta power correlated with BOLD activity more under conditions requiring more cognitive control and EEG/fMRI effects in the right frontal cortex correlated with BOLD activity in a frontoparietal network. Therefore, using simultaneous EEG and fMRI, the present results suggest that beta oscillations are related to postretrieval control operations in the right frontal cortex and act within a broader postretrieval control network. © 2017 Massachusetts Institute of Technology.
Alpha modulation in younger and older adults during distracted
encoding
Date: 2022-06-01
Creator: Syanah C. Wynn, Erika Nyhus, Ole Jensen
Access: Open access
- To successfully encode information into long-term memory, we need top-down control to focus our attention on target stimuli. This attentional focus is achieved by the modulation of sensory neuronal excitability through alpha power. Failure to modulate alpha power and to inhibit distracting information has been reported in older adults during attention and working memory tasks. Given that alpha power during encoding can predict subsequent memory performance, aberrant oscillatory modulations might play a role in age-related memory deficits. However, it is unknown whether there are age-related differences in memory performance or alpha modulation when encoding targets with distraction. Here we show that both older and younger adults are able to encode targets paired with distractors and that the level of alpha power modulation during encoding predicted recognition success. Even though older adults showed signs of higher distractibility, this did not harm their episodic memory for target information. Also, we demonstrate that older adults only modulated alpha power during high distraction, both by enhancing target processing and inhibiting distractor processing. These results indicate that both younger and older adults are able to employ the same inhibitory control mechanisms successfully, but that older adults fail to call upon these when distraction is minimal. The findings of this study give us more insight into the mechanisms involved in memory encoding across the lifespan. © 2020 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Receptors and Neuropeptides in the Cardiac Ganglion of the American Lobster, Homarus americanus: A Bioinformatics and Mass Spectrometric Investigation
Date: 2019-01-01
Creator: Louis Mendez
Access: Open access
- Central pattern generators (CPGs) are neural networks that generate rhythmic motor patterns to allow organisms to perform stereotypical tasks, such as breathing, scratching, flying, and walking. The American lobster, Homarus americanus, is a simple model system whose CPGs are functionally analogous to those in vertebrate models and model complex rhythmic behaviors. CPGs in many Crustacea, including the American lobster, have been studied because of their ability to maintain biological function after isolation in physiologically relevant conditions. The cardiac ganglion (CG) is a CPG consisting of five larger motor neurons and four smaller pacemaker neurons that innervate the cardiac neuromuscular system and generate electrical bursts that drive patterned behaviors. Neuromodulators, such as neuropeptides, are known to modulate neural output in the CPGs of the American lobster. Currently, neuromodulators affecting the cardiac ganglia are thought to be mainly expressed and secreted outside of the cardiac ganglia, acting as extrinsic neuromodulators. However, there is current evidence to support the idea that neuromodulators can be intrinsically expressed within the cardiac ganglion of the American lobster. Preliminary studies using transcriptomic techniques on genomic and transcriptomic information indicate that neuropeptides are likely expressed within the cardiac ganglion. However, little research has been done to determine whether these neuropeptides are expressed in the cardiac ganglion of the American lobster. Therefore, the purpose of this study is to combine bioinformatics and mass spectrometric techniques to determine whether select neuropeptides are present in the cardiac ganglion within the cardiac neuromuscular system of the American lobster, Homarus americanus. Our data mining techniques using protein query sequences obtained from previously annotated brain and eyestalk transcriptomes resulted in the identification of 22 putative neuropeptides preprohormones from 17 neuropeptide families and 20 putative neuropeptide receptors from 17 neuropeptide receptor families in the CG transcriptome. Additionally, 9 putative neuropeptide receptors from 7 neuropeptide receptor families were detected in the cardiac muscle transcriptome. Of the 17 neuropeptide families detected, receptors for 9 of these neuropeptide families were detected in the CG transcriptome. Receptors for 6 of the neuropeptide families were also present in the cardiac muscle transcriptome. Interestingly, receptors for 6 of neuropeptide families detected were not found in either the CG or cardiac muscle transcriptomes, and receptors for 4 neuropeptide families that weren’t detected in the CG transcriptome were found in the cardiac muscle transcriptome. Therefore, our research suggests that neuropeptides are able to modulate CPG activity extrinsically, either though hormonal or local delivery, or intrinsically. Additionally, neuropeptides were extracted from the stomatogastric ganglion and the commissural ganglion using a scaled-down neuropeptide extraction protocol to estimate the number of tissues required to obtain sufficiently strong mass spectrometry signals. Pooled samples with two commissural ganglia and single samples of a commissural ganglion and a stomatogastric ganglion displayed little signal and an increase in larger peptides and impurities relative to single-tissue samples. Therefore, further optimization of the scaled-down neuropeptide extraction protocol must be done prior to analysis of a cardiac ganglion in the American lobster.