Showing 251 - 260 of 2040 Items

Economic-based projections of future land use in the conterminous United States under alternative policy scenarios

Date: 2012-04-01

Creator: V. C. Radeloff

E. Nelson

A. J. Plantinga

D. J. Lewis

D., Helmers

J. J. Lawler

J. C. Withey

F. Beaudry

S. Martinuzzi

Access: Open access

Land-use change significantly contributes to biodiversity loss, invasive species spread, changes in biogeochemical cycles, and the loss of ecosystem services. Planning for a sustainable future requires a thorough understanding of expected land use at the fine spatial scales relevant for modeling many ecological processes and at dimensions appropriate for regional or national-level policy making. Our goal was to construct and parameterize an econometric model of land-use change to project future land use to the year 2051 at a fine spatial scale across the conterminous United States under several alternative land-use policy scenarios. We parameterized the econometric model of land-use change with the National Resource Inventory (NRI) 1992 and 1997 land-use data for 844 000 sample points. Land-use transitions were estimated for five land-use classes (cropland, pasture, range, forest, and urban). We predicted land-use change under four scenarios: business-as-usual, afforestation, removal of agricultural subsidies, and increased urban rents. Our results for the business-as-usual scenario showed widespread changes in land use, affecting 36% of the land area of the conterminous United States, with large increases in urban land (79%) and forest (7%), and declines in cropland (\-16%) and pasture (\-13%). Areas with particularly high rates of land-use change included the larger Chicago area, parts of the Pacific Northwest, and the Central Valley of California. However, while land-use change was substantial, differences in results among the four scenarios were relatively minor. The only scenario that was markedly different was the afforestation scenario, which resulted in an increase of forest area that was twice as high as the business-as-usual scenario. Land-use policies can affect trends, but only so much. The basic economic and demographic factors shaping land-use changes in the United States are powerful, and even fairly dramatic policy changes, showed only moderate deviations from the business-as-usual scenario. Given the magnitude of predicted land-use change, any attempts to identify a sustainable future or to predict the effects of climate change will have to take likely land-use changes into account. Econometric models that can simulate land-use change for broad areas with fine resolution are necessary to predict trends in ecosystem service provision and biodiversity persistence. © 2012 by the Ecological Society of America.


The efficiency of voluntary incentive policies for preventing biodiversity loss

Date: 2011-01-01

Creator: David J. Lewis

Andrew J. Plantinga

Erik Nelson

Stephen Polasky

Access: Open access

Habitat loss is a primary cause of loss of biodiversity but conserving habitat for species presents challenges. Land parcels differ in their ability to produce returns for landowners and landowners may have private information about the value of the land to them. Land parcels also differ in the type and quality of habitat and the spatial pattern of land use across multiple landowners is important for determining the conservation value of parcels. This paper analyzes the relative efficiency of simple voluntary incentive-based policies in achieving biodiversity conservation objectives. This topic is important not just for biodiversity conservation but for any effort to provide a public good requiring coordination across multiple decision-makers who have some degree of private information. We develop a method that integrates spatially explicit data, an econometric model of private land-use decisions, landscape simulations, a biological model of biodiversity as a function of landscape pattern, and an algorithm that estimates the set of efficient solutions. These methods allow us to simulate landowner responses to policies, measure the consequences of these decisions for biodiversity conservation, and compare these outcomes to efficient outcomes to show the relative efficiency of various policy approaches. We find substantial differences in biodiversity conservation scores generated by simple voluntary incentive-based policies and efficient solutions. The performance of incentive-based policies is particularly poor at low levels of the conservation budget where spatial fragmentation of conserved parcels is a large concern. Performance can be improved by encouraging agglomeration of conserved habitat and by incorporating basic biological information, such as that on rare habitats, into the selection criteria. © 2010 Elsevier B.V.


Two modes of transvection at the eyes absent gene of Drosophila demonstrate plasticity in transcriptional regulatory interactions in cis and in trans

Date: 2019-01-01

Creator: Katherine Tian

Rachel E. Henderson

Reyna Parker

Alexia Brown

Justine E., Johnson

Jack R. Bateman

Access: Open access

For many genes, proper gene expression requires coordinated and dynamic interactions between multiple regulatory elements, each of which can either promote or silence transcription. In Drosophila, the complexity of the regulatory landscape is further complicated by the tight physical pairing of homologous chromosomes, which can permit regulatory elements to interact in trans, a phenomenon known as transvection. To better understand how gene expression can be programmed through cis- and trans-regulatory interactions, we analyzed transvection effects for a collection of alleles of the eyes absent (eya) gene. We find that trans-activation of a promoter by the eya eye-specific enhancers is broadly supported in many allelic backgrounds, and that the availability of an enhancer to act in trans can be predicted based on the molecular lesion of an eya allele. Furthermore, by manipulating promoter availability in cis and in trans, we demonstrate that the eye-specific enhancers of eya show plasticity in their promoter preference between two different transcriptional start sites, which depends on promoter competition between the two potential targets. Finally, we show that certain alleles of eya demonstrate pairing-sensitive silencing resulting from trans-interactions between Polycomb Response Elements (PREs), and genetic and genomic data support a general role for PcG proteins in mediating transcriptional silencing at eya. Overall, our data highlight how eya gene regulation relies upon a complex but plastic interplay between multiple enhancers, promoters, and PREs.


Rapid mechanisms for generating genome diversity: Whole ploidy shifts, aneuploidy, and loss of heterozygosity

Date: 2014-01-01

Creator: Richard J. Bennett

Anja Forche

Judith Berman

Access: Open access

Human fungal pathogens can exist in a variety of ploidy states, including euploid and aneuploid forms. Ploidy change has a major impact on phenotypic properties, including the regulation of interactions with the human host. In addition, the rapid emergence of drug-resistant isolates is often associated with the formation of specific supernumerary chromosomes. Pathogens such as Candida albicans and Cryptococcus neoformans appear particularly well adapted for propagation in multiple ploidy states with novel pathways driving ploidy variation. In both species, heterozygous cells also readily undergo loss of heterozygosity (LOH), leading to additional phenotypic changes such as altered drug resistance. Here, we examine the sexual and parasexual cycles that drive ploidy variation in human fungal pathogens and discuss ploidy and LOH events with respect to their far-reaching roles in fungal adaptation and pathogenesis.


Mass Spectrometry Quantification, Localization, and Discovery of Feeding-Related Neuropeptides in Cancer borealis

Date: 2021-02-17

Creator: Kellen Delaney

Mengzhou Hu

Tessa Hellenbrand

Patsy S. Dickinson

Michael P., Nusbaum

Lingjun Li

Access: Open access

The crab Cancer borealis nervous system is an important model for understanding neural circuit dynamics and modulation, but the identity of neuromodulatory substances and their influence on circuit dynamics in this system remains incomplete, particularly with respect to behavioral state-dependent modulation. Therefore, we used a multifaceted mass spectrometry (MS) method to identify neuropeptides that differentiate the unfed and fed states. Duplex stable isotope labeling revealed that the abundance of 80 of 278 identified neuropeptides was distinct in ganglia and/or neurohemal tissue from fed vs unfed animals. MS imaging revealed that an additional 7 and 11 neuropeptides exhibited altered spatial distributions in the brain and the neuroendocrine pericardial organs (POs), respectively, during these two feeding states. Furthermore, de novo sequencing yielded 69 newly identified putative neuropeptides that may influence feeding state-related neuromodulation. Two of these latter neuropeptides were determined to be upregulated in PO tissue from fed crabs, and one of these two peptides influenced heartbeat in ex vivo preparations. Overall, the results presented here identify a cohort of neuropeptides that are poised to influence feeding-related behaviors, providing valuable opportunities for future functional studies.


Evidence for penguin-diagram decays: First observation of B→K*(892)γ

Date: 1993-01-01

Creator: R. Ammar

S. Ball

P. Baringer

D. Coppage

N., Copty

R. Davis

N. Hancock

M. Kelly

N. Kwak

H. Lam

Y. Kubota

M. Lattery

J. K. Nelson

S. Patton

D. Perticone

R. Poling

V. Savinov

S. Schrenk

R. Wang

M. S. Alam

I. J. Kim

B. Nemati

J. J. O'Neill

H. Severini

C. R. Sun

M. M. Zoeller

G. Crawford

M. Daubenmeir

R. Fulton

D. Fujino

K. K. Gan

Access: Open access

We have observed the decays B0→K*(892)0γ and B-→K*(892)-γ, which are evidence for the quark-level process b→sγ. The average branching fraction is (4.5±1.5±0.9) ×10-5. This value is consistent with standard model predictions from electromagnetic penguin diagrams. © 1993 The American Physical Society.


Study of D0 decays into K̄0 and K̄*0

Date: 1993-01-01

Creator: M. Procario

S. Yang

D. S. Akerib

B. Barish

M., Chadha

S. Chan

D. F. Cowen

G. Eigen

J. S. Miller

J. Urheim

A. J. Weinstein

D. Acosta

M. Athanas

G. Masek

B. Ong

H. Paar

M. Sivertz

A. Bean

J. Gronberg

R. Kutschke

S. Menary

R. J. Morrison

S. Nakanishi

H. N. Nelson

T. K. Nelson

J. D. Richman

H. Tajima

D. Schmidt

D. Sperka

M. S. Witherell

R. Ballest

Access: Open access

Using the CLEO II detector at CESR we have studied D0 decays into final states with a K̄0 or K̄*0, and have measured branching ratios for the decay modes D0→(K̄0K̄*0)π0,η, η′. These results are compared with predictions of various charm decay models, and contributions of final-state interactions are discussed. © 1993 The American Physical Society.


To what extent may peptide receptor gene diversity/complement contribute to functional flexibility in a simple pattern-generating neural network?

Date: 2019-06-01

Creator: Patsy S. Dickinson

J. Joe Hull

Alexandra Miller

Emily R. Oleisky

Andrew E., Christie

Access: Open access

Peptides are known to contribute to central pattern generator (CPG) flexibility throughout the animal kingdom. However, the role played by receptor diversity/complement in determining this functional flexibility is not clear. The stomatogastric ganglion (STG) of the crab, Cancer borealis, contains CPGs that are models for investigating peptidergic control of rhythmic behavior. Although many Cancer peptides have been identified, their peptide receptors are largely unknown. Thus, the extent to which receptor diversity/complement contributes to modulatory flexibility in this system remains unresolved. Here, a Cancer mixed nervous system transcriptome was used to determine the peptide receptor complement for the crab nervous system as a whole. Receptors for 27 peptide families, including multiple receptors for some groups, were identified. To increase confidence in the predicted sequences, receptors for allatostatin-A, allatostatin-B, and allatostatin-C were cloned, sequenced, and expressed in an insect cell line; as expected, all three receptors trafficked to the cell membrane. RT-PCR was used to determine whether each receptor was expressed in the Cancer STG. Transcripts for 36 of the 46 identified receptors were amplified; these included at least one for each peptide family except RYamide. Finally, two peptides untested on the crab STG were assessed for their influence on its motor outputs. Myosuppressin, for which STG receptors were identified, exhibited clear modulatory effects on the motor patterns of the ganglion, while a native RYamide, for which no STG receptors were found, elicited no consistent modulatory effects. These data support receptor diversity/complement as a major contributor to the functional flexibility of CPGs.


Measurement of the τ-lepton mass

Date: 1993-01-01

Creator: R. Balest

M. Daoudi

W. T. Ford

D. R. Johnson

K., Lingel

M. Lohner

P. Rankin

J. G. Smith

J. P. Alexander

C. Bebek

K. Berkelman

D. Besson

T. E. Browder

D. G. Cassel

H. A. Cho

D. M. Coffman

P. S. Drell

R. Ehrlich

R. S. Galik

M. Garcia-Sciveres

B. Geiser

B. Gittelman

S. W. Gray

D. L. Hartill

B. K. Heltsley

K. Honscheid

C. D. Jones

J. Kandaswamy

N. Katayama

P. C. Kim

D. L. Kreinick

Access: Open access

Using data from the CLEO II detector at CESR, we measure the τ-lepton mass by exploiting the unique kinematics of events in which both τ's decay hadronically. The result is mτ=1777.8±0.7±1.7 MeV/c2. By comparing our result with other measurements near τ-pair threshold, we extract an upper limit on the τ-neutrino mass of 75 MeV/c2 at 95% confidence level. © 1993 The American Physical Society.


Observation of the charmed baryon c+ and measurement of the isospin mass splittings of the c

Date: 1993-01-01

Creator: G. Crawford

C. M. Daubenmier

R. Fulton

D. Fujino

K. K., Gan

K. Honscheid

H. Kagan

R. Kass

J. Lee

R. Malchow

F. Morrow

Y. Skovpen

M. Sung

C. White

J. Whitmore

P. Wilson

F. Butler

X. Fu

G. Kalbfleisch

M. Lambrecht

W. R. Ross

P. Skubic

J. Snow

P. L. Wang

M. Wood

D. Bortoletto

D. N. Brown

J. Fast

R. L. McIlwain

T. Miao

D. H. Miller

Access: Open access

We observe the c+ baryon decaying to Λc+π0 and measure the mass difference M(c+)-M(Λc+) to be 168.5±0.2 MeV/c2. We also measure the mass differences M(c++)-M(Λc+) and M(c0-M(Λc+) with improved precision and determine the isospin mass splittings M(c++)-M(c0) and M(c+)-M(c0) to be 1.1±0.4±0.1 MeV/c2 and 1.4±0.5±0.3 MeV/c2, respectively. Our results indicate that the light quark mass difference does not dominate the isospin mass splitting in c. © 1993 The American Physical Society.