Showing 2011 - 2020 of 4695 Items
Date: 2021-10-01
Creator: Abigail Kaminski
Dana Marie Bauer
Kathleen P. Bell
Cynthia S. Loftin
Erik J., Nelson
Access: Open access
- Context: Urban-rural gradients are useful tools when examining the influence of human disturbances on ecological, social and coupled systems, yet the most commonly used gradient definitions are based on single broad measures such as housing density or percent forest cover that fail to capture landscape patterns important for conservation. Objectives: We present an approach to defining urban–rural gradients that integrates multiple landscape pattern metrics related to ecosystem processes important for natural resources and wildlife sustainability. Methods: We develop a set of land cover composition and configuration metrics and then use them as inputs to a cluster analysis process that, in addition to grouping towns with similar attributes, identifies exemplar towns for each group. We compare the outcome of the cluster-based urban-rural gradient typology to outcomes for four commonly-used rule-based typologies and discuss implications for resource management and conservation. Results: The resulting cluster-based typology defines five town types (urban, suburban, exurban, rural, and agricultural) and notably identifies a bifurcation along the gradient distinguishing among rural forested and agricultural towns. Landscape patterns (e.g., core and islet forests) influence where individual towns fall along the gradient. Designations of town type differ substantially among the five different typologies, particularly along the middle of the gradient. Conclusions: Understanding where a town occurs along the urban-rural gradient could aid local decision-makers in prioritizing and balancing between development and conservation scenarios. Variations in outcomes among the different urban-rural gradient typologies raise concerns that broad-measure classifications do not adequately account for important landscape patterns. We suggest future urban-rural gradient studies utilize more robust classification approaches.
Date: 2015-06-15
Creator: Bess Vlaisavljevich
Samuel O. Odoh
Sondre K. Schnell
Allison L. Dzubak
Kyuho, Lee
Nora Planas
Jeffrey B. Neaton
Laura Gagliardi
Berend Smit
Access: Open access
- Using a combination of density functional theory and lattice models, we study the effect of CO2 adsorption in an amine functionalized metal-organic framework. These materials exhibit a step in the adsorption isotherm indicative of a phase change. The pressure at which this step occurs is not only temperature dependent but is also metal center dependent. Likewise, the heats of adsorption vary depending on the metal center. Herein we demonstrate via quantum chemical calculations that the amines should not be considered firmly anchored to the framework and we explore the mechanism for CO2 adsorption. An ammonium carbamate species is formed via the insertion of CO2 into the M-Namine bonds. Furthermore, we translate the quantum chemical results into isotherms using a coarse grained Monte Carlo simulation technique and show that this adsorption mechanism can explain the characteristic step observed in the experimental isotherm while a previously proposed mechanism cannot. Furthermore, metal analogues have been explored and the CO2 binding energies show a strong metal dependence corresponding to the M-Namine bond strength. We show that this difference can be exploited to tune the pressure at which the step in the isotherm occurs. Additionally, the mmen-Ni2(dobpdc) framework shows Langmuir like behavior, and our simulations show how this can be explained by competitive adsorption between the new model and a previously proposed model.
Date: 2010-01-13
Creator: Sean Cleary
Murray Elder
Andrew Rechnitzer
Jennifer Taback
Access: Open access
- We consider random subgroups of Thompson's group F with respect to two natural stratifications of the set of all k-generator subgroups. We find that the isomorphism classes of subgroups which occur with positive density are not the same for the two stratifications. We give the first known examples of persistent subgroups, whose isomorphism classes occur with positive density within the set of k-generator subgroups, for all sufficiently large k. Additionally, Thompson's group provides the first example of a group without a generic isomorphism class of subgroup. Elements of F are represented uniquely by reduced pairs of finite rooted binary trees. We compute the asymptotic growth rate and a generating function for the number of reduced pairs of trees, which we show is D-finite (short for differentiably finite) and not algebraic. We then use the asymptotic growth to prove our density results. © European Mathematical Society.
Date: 1998-04-01
Creator: Zheng Hui He
Deze He
Bruce D. Kohorn
Access: Open access
- Pathogen infection of angiosperms must rely on some interaction between the extracellular matrix (ECM) and the invading agent, and may be accompanied by signaling between the ECM and cytoplasm. An Arabidopsis cell wall associated receptor kinase (Wak1) has an amino-terminal domain that is tightly associated with the ECM, spans the plasma membrane and has a cytoplasmic protein kinase domain. Wak1 expression is induced when Arabidopsis plants are infected with pathogen, or when the pathogen response is stimulated either by exogenous salicylate (SA) or its analog 2,2-dichloroisonicotinic acid (INA). This Wak1 induction requires the positive regulator NPR1/NIM1. Thus Wak1 is a pathogen-related (PR) protein. Expression of an antisense and a dominant negative allele of Wak1 shows that induced expression of Wak1 is needed for a plant to survive if stimulated by INA. Ectopic expression of the entire Wak1, or the kinase domain alone, can provide resistance to otherwise lethal SA levels. These experiments suggest that Wak1 expression and other PR proteins are protecting plants from detrimental effects incurred during the pathogen response. These results provide a direct link between a protein kinase that could mediate signals from the ECM, to the events that are precipitated by a pathogen infection.
Date: 1986-01-01
Creator: P. R. Chitnis
E. Harel
B. D. Kohorn
E. M. Tobin
J. P., Thornber
Access: Open access
- When the in vitro synthesized precursor of a light-harvesting chlorophyll a/b binding protein (LHCP) from Lemna gibba is imported into barley etiochloroplasts, it is processed to a single form. Both the processed form and the precursor are found in the thylakoid membranes, assembled into the light-harvesting complex of photosystem II. Neither form can be detected in the stromal fraction. The relative amounts of precursor and processed forms observed in the thylakoids are dependent on the developmental stage of the plastids used for uptake. The precursor as well as the processed form can also be detected in thylakoids of greening maize plastids used in similar uptake experiments. This detection of a precursor in the thylakoids, which has not been previously reported, could be a result of using rapidly developing plastids and/or using an heterologous system. Our results demonstrate that the extent of processing of LHCP precursor is not a prerequisite for its inclusion in the complex. They are also consistent with the possibility that the processing step can occur after insertion of the protein into the thylakoid membrane.
Date: 2017-12-01
Creator: Alia Hamieh
Naomi Tanabe
Access: Open access
- In this paper, we prove that a primitive Hilbert cusp form g is uniquely determined by the central values of the Rankin-Selberg L-functions (formula presented), where f runs through all primitive Hilbert cusp forms of level q for infinitely many prime ideals q. This result is a generalization of the work of Luo (1999) to the setting of totally real number fields.
Date: 1982-01-01
Creator: B. D. Kohorn
P. M.M. Rae
Access: Open access
- An extract of Drosophila melanogaster Kc cells is shown to give specific and accurate transcription of truncated segments of cloned D. melanogaster ribosomal DNA (rDNA). When clones are digested with restriction enzymes so that the initiation site is flanked by 0.3 kilobase (kb) of nontranscribed spacer and >0.4 kb of external transcribed spacer, RNA polymerase I activity in the extract parallels in vivo rRNA synthesis in selection of the coding strand of template and the site of transcription initiation. When >0.3 kb of the nontranscribed spacer is contiguous with transcribed spacer, in vitro initiations evidently also occur in repeated sequences adjacent to the site of in vivo initiation; when ≤0.4 kb of the external transcribed spacer is present in a segment, expected transcripts are heterogeneous in length or not detectable. Transcription in the cell-free system requires the specific addition of D. melanogaster rDNA: neither D. virilis rDNA, vector plasmid, nor clones of D. melanogaster genes that are transcribed in vivo by RNA polymerases II and III serve as templates in the system. Drosophila rDNA units that have an interruption in the 28S rRNA coding region are not transcribed in vivo, but restriction digests of a recombinant phage DNA that contains such a unit are active as template for in vitro rDNA transcription.
Date: 2018-09-07
Creator: Alan Hastings
Karen C. Abbott
Kim Cuddington
Tessa Francis
Gabriel, Gellner
Ying Cheng Lai
Access: Open access
- The importance of transient dynamics in ecological systems and in the models that describe them has become increasingly recognized. However, previous work has typically treated each instance of these dynamics separately. We review both empirical examples and model systems, and outline a classification of transient dynamics based on ideas and concepts from dynamical systems theory. This classification provides ways to understand the likelihood of transients for particular systems, and to guide investigations to determine the timing of sudden switches in dynamics and other characteristics of transients. Implications for both management and underlying ecological theories emerge.
Date: 1993-01-01
Creator: Stephen G. Naculich
Access: Open access
- Relations among fermion masses and mixing angles at the scale of grand unification are modified at lower energies by renormalization group running induced by gauge and Yukawa couplings. In super-symmetric theories, the b quark and lepton Yukawa couplings, as well as the t quark coupling, may cause significant running if tan, the ratio of Higgs field expectation values, is large. We present approximate analytic expressions for the scaling factors for fermion masses and CKM matrix elements induced by all three third generation Yukawa couplings. We then determine how running caused by the third generation of fermions affects the predictions arising from three possible forms for the Yukawa coupling matrices at the GUT scale: the Georgi-Jarlskog, Giudice, and Fritzsch textures. © 1993 The American Physical Society.