Showing 11 - 14 of 14 Items

Genetic Analysis of Adhesion Protein ELMO3 in Arabidopsis thaliana

Date: 2022-01-01

Creator: Garrison Asper

Access: Open access

The Extracellular Matrix (ECM) between plant cells is vital for structure, development, and intercellular adhesion. A pectin rich layer in between cells, the middle lamella, is largely responsible for regulating the adhesive properties of adjacent plant cells. Homogalacturonan (HG) pectin, the most common, is synthesized in the Golgi and secreted into the ECM where it undergoes calcium crosslinking, increasing its adhesive properties. Mutations in proteins essential for HG synthesis can reveal a severe adhesion defective phenotype, where the hypocotyls of dark grown Arabidopsis exhibit cell sloughing, curling, and general disorganization. A family of five ELMO proteins are suspected to act as scaffolds for pectin biosynthesis enzymes. ELMO1 and ELMO4 mutants exhibit an adhesion deficient phenotype, and a double mutant provides evidence of redundancy in function between ELMO1 and ELMO2. ELMO1-GFP co-immunoprecipitated with enzymes required for HG synthesis indicating its role as a scaffold protein. Double mutants of the other ELMO homologues were created to determine if they exhibit functional redundancy, and ELMO1 and ELMO3 appear partially redundant. A gene deletion of ELMO3 was also created using the CRSPR/Cas9 system, resulting in two distinct elmo3 deletion alleles, which were phenotypically identical to the original elmo3-/- mutant. All adhesion defective phenotypes can be partially suppressed by altering the osmoticum and hence turgor that provides pressure on adhesive cells. Lastly, ELMO3-GFP was localized to the Golgi, the site of pectin biosynthesis, further supporting a common role of the ELMOs in pectin biosynthesis.


Miniature of Role of Polycomb group proteins in regulation of <i>eyes absent</i> gene expression in <i>Drosophila melanogaster</i>
Role of Polycomb group proteins in regulation of eyes absent gene expression in Drosophila melanogaster
This record is embargoed.
    • Embargo End Date: 2027-05-16

    Date: 2024-01-01

    Creator: Joanne Du

    Access: Embargoed



      Miniature of The <i>EOL</i> Enhancer Activates <i>Eya</i> Expression to Mediate Visual System Development in <i>Drosophila melanogaster</i>
      The EOL Enhancer Activates Eya Expression to Mediate Visual System Development in Drosophila melanogaster
      This record is embargoed.
        • Embargo End Date: 2027-05-16

        Date: 2024-01-01

        Creator: Benjamin Sewell-Grossman

        Access: Embargoed



          Hybridization dynamics of a newly discovered parrotfish swarm in the Tropical Eastern Pacific

          Date: 2017-05-01

          Creator: Robert Barron

          Access: Open access

          Hybrid zones and their dynamics are important in the understanding of the genetic basis of reproductive isolation and speciation. This study seeks to investigate the hybridization dynamics of a Scarus hybrid swarm within the Tropical Eastern Pacific (TEP) that includes four phenotypically distinct species: S. perrico, S. ghobban, S. rubroviolaceus, and S. compressus. Genetic and population structure analyses of four nuclear loci and a mitochondrial locus revealed that one of the four species, S. compressus, was the result of two different hybrid crosses: S. perrico ✕ S. rubroviolaceus and S. perrico ✕ S. ghobban. A NewHybrids model indicated that most of the S. compressus samples were F1 hybrids, but 21% of the S. compressus sample was classified as “parentals” which could also be explained by the presence of either F2 hybrids or backcrosses with S. compressus phenotypes, given the relatively low power of the nuclear data set (4 loci) to resolve complex hybrid genotypes. Significant mito-nuclear discordance in all three non-hybrid species is consistent with an evolutionary effect of backcrossing between F1 hybrids and “pure” species. This study reveals a relative ease of hybridization between parrotfish taxa separated by an estimated 4.5 million years of isolation and opens the door to further studies on the potential effects of gene flow across old species boundaries and perhaps the formation of new species by hybrid speciation in a diverse clade of tropical reef fish. Elucidating the nature of potentially “deep” F2 crosses and backcrosses within the TEP Scarus hybrid system will allow us to better understand the effects of hybridization on evolution and speciation on both a micro- and macro-ecological scale.