Showing 1971 - 1980 of 2039 Items
Date: 2019-01-01
Creator: Bess Vlaisavljevich
Sondre K. Schnell
Allison L. Dzubak
Kyuho Lee
Nora, Planas
Jeffrey B. Neaton
Laura Gagliardi
Berend Smit
Access: Open access
- The authors regret that there are some discrepancies reproducing the data in the original article due to the determined coordinates not being the fully optimised geometries. The authors have provided more information as follows. In the manuscript entitled 'CO2 induced phase transitions in diamine-appended metal-organic frameworks', minor errors with the attached coordinates and energies reported in the paper have recently been identified. In this communication, we correct these errors. Here, we present updated optimized geometries and binding energies. We also take this opportunity to include an extended computational details section to ensure reproducibility. In addition, we show that the overall conclusions of the paper are not affected by these changes. A detailed comparison with the results reported by Lee et al.1 revealed that the DFT optimization of the coordinates provided with the manuscript do not lead to the values reported in the manuscript, and they warrant correction. Corrected coordinates and updated tables (Tables 1-7) and figures (Fig. 1, 2, 4 and 5) are included here for calculations using the PBE functional. These structures have been repeated using a slightly tighter force threshold than in the original manuscript (details below). The M06-L calculations reported in the original manuscript are not revisited since they were performed to assess the role of dispersion. Since the publication of our work in 2015, a far more detailed study of this effect has been published by one of the authors rendering these M06-L calculations unnecessary and we refer readers interested in the role of dispersion on the carbamate formation to this more recent study by Lee et al.1 In addition to correcting our DFT calculations, we examine the effects of the revised DFT values on the lattice model in this work.We recompute the lattice model with the M06-L and PBE values fromthe original manuscript as well as the corrected PBE values reported below (Fig. 6-8 and Tables 8-10). In all three sets of isotherm plots the ordering is preserved but the inflection points are spaced differently with the new PBE numbers, leading to quantitative differences that are nonetheless qualitatively similar to previous work. Finally, we discuss different ways that CO2 can coordinate to the metal binding site, as shown in Fig. 3. We should have notedmore clearly in ourmanuscript that these were starting configurations and not necessarily the final converged structures since our goal was to try several starting geometries to determine which coordination environment around the metal site was lowest in energy. Take for example bidentate insertion. Chemical intuition suggests that this structure could rotate to one that has only one CO2 oxygen center closer to the metal than the other and we observe this in our optimized structure. The resulting geometries we obtained for the starting arrangements noted in the figure are higher in energy than the chain model as reported in our original paper.We wish to emphasize that at the time of our 2015 study, our objective was to understand whether or not CO2 was bound to the metal and if one-dimensional chain formation could lead to a step in the adsorption isotherm. It has since become clear that a far more thorough study of the arrangements of the amines is required to truly understand competing amine arrangements preset in experiment. This was outside the scope of our work. Once more, these calculations are perhaps now outdated given work in the field in recent years. We again refer interested readers to a more recent study by Lee et al.1 1. Extended computational details to ensure reproducibility In the course of rectifying the error in our calculations, we wanted to ensure that all revised calculations were converged using the exact same protocol; therefore, we repeated the PBE calculations for the pair and chain models using updated computational details given here to ensure reproducibility. The M2(dobpdc) MOF contains six unsaturated metal sites per unit cell. To calculate the binding energies of CO2 in its amine appended analogue mmen-M2(dobpdc), one mmen ligand per CO2 was added per unit cell. The smaller sized ethylenediamine (en) was used to saturate the remaining amines not involved in CO2 binding. In the case of the pair mode, two mmen-amines are included per unit cell only. All DFT calculations were performed with periodic boundary conditions carried out using the VASP 5.4.4 package (original calculations were performed with VASP 5.3.3). The PBE functional was employed to examine the energetics of CO2 adsorption.3 On-site Hubbard U corrections were employed for metal d electrons.4 The U values are determined to reproduce oxidation energies in the respective metal oxides and are given in the tables below. The electron-ion interactions in these calculations were described with the projector augmented wave (PAW) method developed by Blöchl with an energy cutoff of 550 eV.5 This combination of the PBE functional, PAW scheme, and energy cutoff was used for full geometry optimization of the various species investigated until the forces on all atoms were smaller than 0.02 eV Å-1 and the SCF convergence was set to 1 × 10-7 eV. Given the large size of the unit cell and the tests with other numbers of K-points from the original study, only results obtained from G-point calculations are reported here. Finally, heats of adsorption are now reported below along with E + ZPE values, while in the original manuscript only E + ZPE were reported. No changes were made to how the vibrational corrections were computed; however, we have included some additional details to ensure reproducibility.6 Harmonic vibrational modes (ωi) were computed for CO2 in the gas phase and its bound product state (amine-CO2-MOF complex). The framework itself was taken to be rigid and only the vibrational modes associated with the motion of the amine, the metal center, first coordination sphere (oxygen atoms bound to the metal in the MOF backbone), and (if present) the bound CO2 were computed. Since the harmonic approximation breaks down for low frequency modes, we replaced all modes less than 50 cm-1 with 50 cm-1 when computing the zero-point and thermal energies. The following standard harmonic expressions were used to compute the vibrational corrections: Zero-point vibrational energy (ZPE) is: [Equation presented here] While for the bound product, the rotational and translational degrees of freedom of CO2 have been converted to additional vibrational modes allowing one to compute the thermal correction simply as: [Equation presented here] 2. Values for the chain model The chain model used in our original study included 1 mmen- and 5 en-amines. The values from the original paper are reported in Table 1. When we repeat these calculations using the procedure described in Section 1, we obtain the values in Table 2. In addition to the chain model described above (1 mmen- and 5 en-amines per unit cell), during our original study we performed calculations with another model that was not included in the manuscript since its values yielded results further from experiment. This model includes only 1 mmen-amine per unit cell (no other amines) and was used to test the assumption that the five enamines are indeed spectators with respect to the metal dependence of the binding energy. We present the results from this model in Table 3. In the original paper we noted that the energy and bond length trends are correlated and are consistent with the Irving-Williams series. This is no longer true for all metals under investigation, with Zn being an outlier. The results for Zn can be explained by more recent work.1 3. Values for the pair model The model used to compute the "pair" adsorption mechanisms included 2 mmen-amines and 0 en-amines. The values in the original paper are presented in Table 5. 4. Lattice model plots The lattice models to generate adsorption isotherms for these systems were run at one temperature (∼25 °C) using four different input parameters. First the M06-L and PBE values from the original paper were used once more as it has been some time since we have run the lattice model. Then the model is repeated with the new set of values from PBE. If we compare Fig. 7 and 8, the order is preserved, but the infliction points are spaced a bit differently. This is due to the scaling factor being constant and is something we scaled for each of the different systems as well. The slope is also a bit different, but not more then we should expect for this simple lattice model. Furthermore, we only ever aimed to reproduce the step and the order of the metals. Any finer details cannot be expected to be obtained from this model. The exact values used to compute the isotherms are given in the tables below. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.
Date: 2012-01-01
Creator: Stephen M. Majercik
Access: Open access
- Swarm intelligence can provide robust, adaptable, scalable solutions to difficult problems. The distributed nature of swarm activity is the basis of these desirable qualities, but it also prevents swarm-based techniques from having direct access to global knowledge that could facilitate the task at hand. Our experiments indicate that a swarm system can use an auxiliary swarm, called a communication swarm, to create and distribute an approximation of useful global knowledge, without sacrificing robustness, adaptability, and scalability. We describe a communication swarm and validate its effectiveness on a simple problem.
Date: 2017-07-14
Creator: Allison L. Dzubak
Jaron T. Krogel
Fernando A. Reboredo
Access: Open access
- The necessarily approximate evaluation of non-local pseudopotentials in diffusion Monte Carlo (DMC) introduces localization errors. We estimate these errors for two families of non-local pseudopotentials for the first-row transition metal atoms Sc-Zn using an extrapolation scheme and multideterminant wavefunctions. Sensitivities of the error in the DMC energies to the Jastrow factor are used to estimate the quality of two sets of pseudopotentials with respect to locality error reduction. The locality approximation and T-moves scheme are also compared for accuracy of total energies. After estimating the removal of the locality and T-moves errors, we present the range of fixed-node energies between a single determinant description and a full valence multideterminant complete active space expansion. The results for these pseudopotentials agree with previous findings that the locality approximation is less sensitive to changes in the Jastrow than T-moves yielding more accurate total energies, however not necessarily more accurate energy differences. For both the locality approximation and T-moves, we find decreasing Jastrow sensitivity moving left to right across the series Sc-Zn. The recently generated pseudopotentials of Krogel et al. [Phys. Rev. B 93, 075143 (2016)] reduce the magnitude of the locality error compared with the pseudopotentials of Burkatzki et al. [J. Chem. Phys. 129, 164115 (2008)] by an average estimated 40% using the locality approximation. The estimated locality error is equivalent for both sets of pseudopotentials when T-moves is used. For the Sc-Zn atomic series with these pseudopotentials, and using up to three-body Jastrow factors, our results suggest that the fixed-node error is dominant over the locality error when a single determinant is used.
Date: 2019-01-01
Creator: Kathleen James-Chakraborty
Pep Avilés
Claudia Tittel
Jill Pearlman
Access: Open access
Date: 2019-01-01
Creator: Louis Mendez
Access: Open access
- Central pattern generators (CPGs) are neural networks that generate rhythmic motor patterns to allow organisms to perform stereotypical tasks, such as breathing, scratching, flying, and walking. The American lobster, Homarus americanus, is a simple model system whose CPGs are functionally analogous to those in vertebrate models and model complex rhythmic behaviors. CPGs in many Crustacea, including the American lobster, have been studied because of their ability to maintain biological function after isolation in physiologically relevant conditions. The cardiac ganglion (CG) is a CPG consisting of five larger motor neurons and four smaller pacemaker neurons that innervate the cardiac neuromuscular system and generate electrical bursts that drive patterned behaviors. Neuromodulators, such as neuropeptides, are known to modulate neural output in the CPGs of the American lobster. Currently, neuromodulators affecting the cardiac ganglia are thought to be mainly expressed and secreted outside of the cardiac ganglia, acting as extrinsic neuromodulators. However, there is current evidence to support the idea that neuromodulators can be intrinsically expressed within the cardiac ganglion of the American lobster. Preliminary studies using transcriptomic techniques on genomic and transcriptomic information indicate that neuropeptides are likely expressed within the cardiac ganglion. However, little research has been done to determine whether these neuropeptides are expressed in the cardiac ganglion of the American lobster. Therefore, the purpose of this study is to combine bioinformatics and mass spectrometric techniques to determine whether select neuropeptides are present in the cardiac ganglion within the cardiac neuromuscular system of the American lobster, Homarus americanus. Our data mining techniques using protein query sequences obtained from previously annotated brain and eyestalk transcriptomes resulted in the identification of 22 putative neuropeptides preprohormones from 17 neuropeptide families and 20 putative neuropeptide receptors from 17 neuropeptide receptor families in the CG transcriptome. Additionally, 9 putative neuropeptide receptors from 7 neuropeptide receptor families were detected in the cardiac muscle transcriptome. Of the 17 neuropeptide families detected, receptors for 9 of these neuropeptide families were detected in the CG transcriptome. Receptors for 6 of the neuropeptide families were also present in the cardiac muscle transcriptome. Interestingly, receptors for 6 of neuropeptide families detected were not found in either the CG or cardiac muscle transcriptomes, and receptors for 4 neuropeptide families that weren’t detected in the CG transcriptome were found in the cardiac muscle transcriptome. Therefore, our research suggests that neuropeptides are able to modulate CPG activity extrinsically, either though hormonal or local delivery, or intrinsically. Additionally, neuropeptides were extracted from the stomatogastric ganglion and the commissural ganglion using a scaled-down neuropeptide extraction protocol to estimate the number of tissues required to obtain sufficiently strong mass spectrometry signals. Pooled samples with two commissural ganglia and single samples of a commissural ganglion and a stomatogastric ganglion displayed little signal and an increase in larger peptides and impurities relative to single-tissue samples. Therefore, further optimization of the scaled-down neuropeptide extraction protocol must be done prior to analysis of a cardiac ganglion in the American lobster.
Date: 2015-05-20
Creator: Jay J. Falk
Hannah M. Ter Hofstede
Patricia L. Jones
Marjorie M. Dixon
Paul A., Faure
Elisabeth K.V. Kalko
Rachel A. Page
Access: Open access
- Many predators and parasites eavesdrop on the communication signals of their prey. Eavesdropping is typically studied as dyadic predator-prey species interactions; yet in nature, most predators target multiple prey species and most prey must evade multiple predator species. The impact of predator communities on prey signal evolution is not well understood. Predators could converge in their preferences for conspicuous signal properties, generating competition among predators and natural selection on particular prey signal features. Alternatively, predator species could vary in their preferences for prey signal properties, resulting in sensory-based niche partitioning of prey resources. In the Neotropics, many substrate-gleaning bats use the mate-attraction songs of male katydids to locate them as prey. We studied mechanisms of niche partitioning in four substrate- gleaning bat species and found they are similar in morphology, echolocation signal design and prey-handling ability, but each species preferred different acoustic features of male song in 12 sympatric katydid species. This divergence in predator preference probably contributes to the coexistence of many substrate-gleaning bat species in the Neotropics, and the substantial diversity in the mate-attraction signals of katydids. Our results provide insight into how multiple eavesdropping predator species might influence prey signal evolution through sensory-based niche partitioning.
Date: 2013-10-23
Creator: Patricia L. Jones
Michael J. Ryan
Victoria Flores
Rachel A. Page
Access: Open access
- Animals can use different sources of information when making decisions. Foraging animals often have access to both self-acquired and socially acquired information about prey. The fringe-lipped bat, Trachops cirrhosus, hunts frogs by approaching the calls that frogs produce to attract mates.We examined howthe reliability of self-acquired prey cues affects social learning of novel prey cues. We trained bats to associate an artificial acoustic cue (mobile phone ringtone) with food rewards. Bats were assigned to treatments in which the trained cue was either an unreliable indicator of reward (rewarded 50% of the presentations) or a reliable indicator (rewarded 100% of the presentations), and they were exposed to a conspecific tutor foraging on a reliable (rewarded 100%) novel cue or to the novel cue with no tutor. Bats whose trained cue was unreliable and who had a tutor were significantly more likely to preferentially approach the novel cue when compared with bats whose trained cue was reliable, and to bats that had no tutor. Reliability of self-acquired prey cues therefore affects social learning of novel prey cues by frog-eating bats. Examining when animals use social information to learn about novel prey is key to understanding the social transmission of foraging innovations. © 2013 The Author(s) Published by the Royal Society.
Date: 2009-07-28
Creator: Ruth Griffin
Anne Sustar
Marianne Bonvin
Richard Binari
Alberto, del Valle Rodriguez
Amber M. Hohl
Jack R. Bateman
Christians Villalta
Elleard Heffern
Didier Grunwald
Chris Bakal
Claude Desplan
Gerold Schubiger
C. Ting Wu
Norbert Perrimon
Access: Open access
- In Drosophila melanogaster, widely used mitotic recombination-based strategies generate mosaic flies with positive readout for only one daughter cell after division. To differentially label both daughter cells, we developed the twin spot generator (TSG) technique, which through mitotic recombination generates green and red twin spots that are detectable after the first cell division as single cells. We propose wide applications of TSG to lineage and genetic mosaic studies.
Date: 2003-08-01
Creator: Mark Battle
Michael Bender
Melissa B. Hendricks
David T. Ho
Robert, Mika
Galen McKinley
Song Miao Fan
Tegan Blaine
Ralph F. Keeling
Access: Open access
- The Ar/N2 ratio of air measured at 6 globally distributed sites shows annual cycles with amplitudes of 12 to 37 parts in 106. Summertime maxima reflect the atmospheric Ar enrichment driven by seasonal warming and degassing of the oceans. Paired models of air-sea heat fluxes and atmospheric tracer transport predict seasonal cycles in the Ar/N2 ratio that agree with observations, within uncertainties.
Date: 1999-07-01
Creator: R. L. Langenfelds
R. J. Francey
L. P. Steele
M. Battle
R. F., Keeling
W. F. Budd
Access: Open access
- O2/N2 is measured in the Cape Grim Air Archive (CGAA), a suite of tanks filled with background air at Cape Grim, Tasmania (40.7°S, 144.8°E) between April 1978 and January 1997. Derived trends are compared with published O2/N2 records and assessed against limits on interannual variability of net terrestrial exchanges imposed by trends of δ13C in CO2. Two old samples from 1978 and 1987 and eight from 1996/97 survive critical selection criteria and give a mean 19-year trend in δ(O2/N2) of -16.7 ± 0.5 per meg yr-1, implying net storage of +2.3 ± 0.7 GtC (1015 g carbon) yr-1 of fossil fuel CO2 in the oceans and +0.2 ± 0.9 GtC yr-1 in the terrestrial biosphere. The uptake terms are consistent for both O2/N2 and δ13C tracers if the mean 13C isotopic disequilibrium flux, combining terrestrial and oceanic contributions, is 93 ± 15 GtC ‰ yr-1. Copyright 1999 by the American Geophysical Union.